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Abstract

It is well-known that writing parallel programs that are both fast and correct is significantly
harder than writing sequential ones. In this thesis we introduce a transition-based approach to
the design and implementation of parallel programs. This approach is aimed at applications
whose complex data and control structures make them hard to parallelize by conventional
means. It is based on a programming model with explicit parallelism, and it incorporates data
and process parallelism within a uniform framework.

The transition-based approach addresses the problem of program synthesis by breaking the
development process into four distinct phases. each with explicit correctness and performance
requirements. Module interfaces are well-defined so that rigorous correctness arguments can
be made when desired. Application-specific scheduling is used to enhance performance, and
significant performance tuning of the scheduler can be done in the last phase of development.

Programs designed with this approach rely on data abstractions whose operations behave
serially, but have highly concurrent implementations. Specifications and implementations of
several such abstractions are presented. Some of the implementations are notable in that
they allow access to shared variables without explicit synchronization, thereby exploiting the
full power of sequentially consistent shared memory. To define correct behavior, we consider
correctness notions in the literature and present two new notions that address performance
concerns. First. we liberalize the notion of safety property of linearizability by incorporating
interference specifications, which make assertions about operations should not be run concur-
rently. Second, we define a relatively weak liveness property, non-stopping, that makes efficient
implementations possible.

We apply our programming method to two example programs, matching of terms and com-
pletion of rewriting systems. Both programs are designed and performance tuned using the
transition-based approach. Their implementations make use of highly concurrent types that
meet our correctness conditions, and they perform well on a small shared-memory multiproces-
sor. The completion program is interesting in its own right, as it is the first parallel solution to
an important and much studied problem.

Keywords: Parallel Programming, Multiprocessor, Programming Mptriodology, Specification.
Refinement, Concurrent Object, Linearizability, Sequential Consistency, Scheduling, Comple-
tion of Term Rewriting Systems, Term Matching, Interference Specifications. Transition-Based
Development
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Chapter 1

Introduction

Writing parallel programs that are both correct and fast is significantly harder than writing

sequential ones. In this thesis we study the specifics of what makes parallel programs difficult

to build, and we propose an approach that simplifies their construction.

The approach is designed for building symbolic applications, and it makes use of explicit.

rather than implicit, parallelism. With explicit parallelism, decisions about what to parallelize

and when to synchronize are made by the programmer; implicit parallelism leaves these decisions

to the compiler and run-time system. While implicit parallelism is easier to use, there is little

evidence to suggest that it can produce fast implementations for the kinds of applications our

work addresses. Our approach also assumes an imperative, rather than functional, programming

style. Functional programs avoid many of the correctness problems that come with parallelism.

but we believe that the use of shared mutable data is important to achieving good performance.

We apply our approach to two symbolic applications: matching of terms, and completion of

term rewriting systems. The programs have clean modular structures and exhibit good perfor-

mance on a small multiprocessor. In presenting the applications, we describe the development

process from the early design stages through reasoning about the correctness of the designs and

performance tuning the implementations.
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1.1 The Problem

In this section we study the task of parallel programming, first in a general context and then with

respect to symbolic programs. Section 1.1.1 addresses the question of why parallel programming

is hard in general. Section 1.1.2 describes symbolic applications and why they represent a special

challenge for parallelism.

1.1.1 Why is Parallel Programming Hard?

Many parallel programs suffer from one of two problems: the programs are too complicated, or

the programs are too slow. Unfortunately, these two problems are not mutually exclusive.

A common complaint about parallel programs is that the increased nondeterminism that

comes from parallelism renders them too complicated. Nondeterminism contributes to algo-

rithmic complexity and makes testing and debugging more difficult; it also affects basic ideas

about specification and abstraction. There is a fundamental difference between sequential and

parallel program abstractions, since implementations that are correct when used sequentially

may behave unpredictably when used in parallel. A notion of correctness for program modules

becomes more complicated when it must allow for concurrency.

In addition to problems with the correctness of parallel programs, there are problems with

their performance. An application running on a parallel machine rarely achieves the kind of

performance quoted for that machine. The most obvious reason for disappointing performance

is that the program lacks sufficient parallelism, either because the problem is inherently se-

quential or because the chosen implementation does not uncover the underlying parallelism.

Programmers are often surprised by insufficient parallelism when they set out to implement a

program containing highly parallel algorithms; the parallel algorithms may be fast, but overall

program performance is limited by some sequential task. Even a small amount of parallelism

within the limiting task may be more beneficial than a large amount additional parallelism

within the others.

A second reason for poor performance is exactly the opposite: the program has too much

parallelism. Contrary to idealized models of parallel computation, real machines exact a non-

negligible payment for creating and managing parallel tasks. When those tasks have inter-

dependencies, there is additional overhead for the required communication. Overhead is also
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increased when the amount of parallelism in the program exceeds the parallel resources of the

machine, since n-fold parallelism must be simulated on fewer than n processors using context

switching. As a result, the overhead of parallelism can easily outweigh its benefit.

A final class of performance problems is characterized by fake parallelism: many parallel

tasks exist, but they do little useful work. Fake parallelism can occur when there is too much

synchronization, resulting in tasks that are either blocked or spinning. A more subtle form

of fake parallelism occurs when parallel tasks are computing new results but not progressing

towards an answer. If there is insufficient communication between tasks, then redundant or

unnecessary work may be done.

Most program development efforts require trade-offs between performance and simplicity.

However, the points discussed above indicate that the problems are magnified in the case of

parallel programs, so a balance is harder to find. Anecdotal evidence from programmers confirms

this claim. It is not unusual to hear reports of parallel implementations that run slower than

their sequential counterparts, or of efficient parallel programs in which a seemingly innocuous

change results in a program that is no longer correct.

1.1.2 Why are Symbolic Applications Particularly Hard?

Parallel programs can be characterized by the kind of parallelism they exhibit: process paral-

lelism occurs when different tasks are executed in parallel, while data parallelism occurs when

identical tasks are executed in parallel on different data. Parallel programs are also distin-

guished by the size of the tasks that are executed in parallel, with the extremes being fine

grained and coarse grained. A task in our terminology is a logical unit of computation that is

relatively short-lived. Tasks are executed by threads, which are lightweight processes that can

share objects and are relatively long-lived.

Symbolic applications differ in character from numerical ones, because numerical applica-

tions tend to have more regularities that can be exploited during parallelization. As a result,

programming techniques that are appropriate to one class of applications are not necessarily

appropriate to another. (In discussing the differences between the two problem domains we

over-simplify both: some symbolic applications are regular, some numerical ones are irregular.

and many applications involve a mixture of both styles.)
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* Numerical applications have more regular patterns of control flow, thereby enabling data

parallelism. When one sequence of operations is applied repeatedly to different data.

the repetition can be changed to data parallel code. Symbolic applications require more

process parallelism, and even when high-level data parallelism can be applied, the low-

level instruction streams that are taken in each instance may be different. Thus, machines

supporting multiple instruction streams appear better suited to symbolic programs.

o Numerical programs typically involve large regular data structures such as arrays of num-

bers, while symbolic programs involve irregular structures such as unbalanced trees or

graphs. Data parallelism is therefore easier to schedule in numerical programs, where

the elements in an array have the same size, so granularity can be adjusted uniformly by

working on fixed-size sub-arrays. In addition, symbolic operations often exhibit a kind

of performance instability, in that a small change in the input results in a large variance

in performance. These factors make it difficult to accurately predict the performance

of operations within symbolic programs, so that superior performance requires making

decisions about granularity and scheduling "on the fly."

• A related problem with parallelizing symbolic applications is that communication pat-

terns between parallel tasks are irregular. Thus, while numerical applications may be

implemented efficiently using a synchronous programming model, in which independent

tasks run concurrently and all communication is done at global synchronization points.

this model is not practical for most symbolic applications. A better model for symbolic

applications involves asynchronous tasks that communicate through shared mutable data

structures, which means an imperative programming language and explicit synchroniza-

tion.

1.2 Contributions

As discussed above, many symbolic applications are best parallelized using a programming

model with explicit parallelism and imperative constructs. The main argument against this

model is that it places too great a burden on the programmer. This thesis shows that the

programming complexity of parallelism can be managed using abstraction, without unduly

14



degrading performance. We present significant sample programs that exhibit both modularity

and good performance and that, more importantly, illustrate a general approach to parallel

program development.

The contributions of this thesis fall into four areas: 1) understanding modularity in parallel

programs. 2) synthesizing parallel programs, 3) designing algorithms for concurrent data struc-

tures, and 4) evaluating underlying system support (both hardware and software) for parallel

programming.

Our first contribution is directed at a better understanding of modularity in parallel pro-

grams. A modular program is composed of program units, or abstractions, that can be sep-

arately specified, designed, implemented, and proved correct. Using abstractions does not

eliminate the complexity introduced by parallelism, but it does simplify the program by break-

ing it into manageable pieces. We show that with parallelism, basic units of abstraction must be

restricted, notions of correctness changed, and specifications augmented. In particular. we ex-

amine correctness notions that have been proposed by others [Lam8O, Lam79, HW90, AHg0b].

compare them on practical grounds, and offer a new correctness notion of our own. Our notion

is based on linearizability [HW90], but is strictly weaker. It incorporates interference speci-

fications, which constrain the use of an abstraction in order to admit implementations that

are simpler and more efficient. Interference specifications can be used to give precise interface

specifications for a common kind of object that we call a multi-ported object, i.e., a concurrent

object that can be accessed by only a fixed number of concurrent processes.

Our second and most significant contribution is the transition-based approach for synthesiz-

ing parallel programs, which uses both data and process parallelism, and is intended for devel-

oping coarse-grained parallel programs. The development process is broken into four distinct

steps with a statement of requirements for each step. The approach makes use of concurrent

data types for modularity, and it addresses performance concerns by supporting program-level

parallelism, application-specific scheduling, and fine-grained synchronization. The approach

encourages the programmer to "think in parallel" by requiring that the program be described

by a set of nondeterministic state transitions. Two program examples illustrate our approach

to program synthesis. The examples are developed starting from the initial design phase and

extending through low-level coding decisions and performance tuning. The examples show that
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good performance can be achieved in modular programs.

The early stages of the approach use the same refinement methods that are proposed for

Unity [CM881, but our goals in refinement are different. Unity is used as a programming

language, and the presumption is that Unity compilers can be developed to generate efficient

parallel code from an appropriately refined Unity program, but the practicality of the approach

has not been demonstrated. Our transition axiom specifications are used as a design language,

and our presumption is that programmers can be trained to recognize good designs at the speci-

fication level, and then implement those designs efficiently in a more conventional programming

language. We present criteria to help programmers recognize good designs and programming

techniques to help them produce efficient implementations. One reason for using transition-

axiom specifications as a design language is that standard techniques exist for reasoning about

such specifications. Correctness arguments can be made at various stages in program develop-

ment using abstraction functions and invariants [Lam83, LT87, CM88]. We include examples

of correctness arguments to illustrate their integration into the development process.

This thesis also contributes a number of parallel algorithms, which can be divided into two

different classes: algorithms that use parallelism internally to reduce latency, and algorithms

that support such parallelism by providing high throughput for access to concurrent objects.

Parallel algorithms occur only at the program level in the transition-based approach. so there

are only two parallel algorithms presented here: matching and completion. The completion pro-

cedure is the first parallel solution to a widely used and much studied problem in term rewriting.

The matching algorithm is of pedagogical interest only, since the inputs have to be quite large

before parallelism becomes advantageous. In addition, this thesis contains new algorithms for

implementing concurrent data structures, including unbounded queues and mappings.

The final contribution is a set of programming techniques for writing parallel programs,

addressing some of the low-level engineering issues of shared memory multiprocessors. Our

data type implementations frequently use shared memory without explicit synchronization, so

while the overall programming approach does not depend on shared memory, some of the code

does depend on the full power of a shared (sequentially consistent) memory. These implemen-

tations provide evidence for the power of the shared memory programming model. Within the

architecture community, proponents of weaker memory models claim that accesses to shared
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memory in are usually protected by critical regions. Our examples contradict this claim.

1.3 Overview

In this section we give an overview of each of the chapters in the thesis, and explain the

relationship between them. A comment on the treatment of related work is also appropriate at

this point: since each of the main chapters touches on different fields within the broad area of

parallel programming research, related work is discussed throughout the thesis at the place it

is most relevant.

1.3.1 Specifying Concurrent Data Types

In Chapter 2 we consider some of the general questions related to writing modular parallel

programs. What kinds of modules are useful when writing parallel programs? What do their

specifications look like? What does it mean for an implementation to satisfy an interface

specification? We show how many of the basic concepts such as specifications and correctness

do not carry over directly from sequential programming methods, and we give extensions to the

parallel domain.

A key to making abstraction work is choosing the right notion of correctness. Many cor-

rectness notions have been defined for systems involving concurrency. We consider sequential

consistency [Lam79] and linearizability [HW90], and compare them from the perspective of both

user and implementor. Our conclusion is that sequential consistency is adequate for defining

the interface of shared memory, but that linearizability, which is strictly stronger, is needed for

program modules.

We also show that good performance sometimes requires data abstractions that do not meet

either of the correctness notions, because in actual implementations one is guaranteed that their

use involves limited concurrency. In Chapter 2 we suggest ways of augmenting specifications

with interference specification so that these abstractions are considered correct if they are

used in a controlled environment without interfering concurrency. We also present a notions

that is analogous to the implicit assumption in sequential programs that correct procedures

must terminate. In parallel programs a procedure may communicate with its environment, so
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assumptions about the behavior of the environment are needed. Chapter 3 contains examples

of these abstractions to demonstrate that the correctness notions defined in Chapter 2 allow

for simple and efficient implementations.

1.3.2 Implementing Concurrent Data Types

In Chapter 3 we describe implementations for several concurrent data objects, and identify

programming techniques that can be used in general. The types are shown to be useful, since

each is used in Chapter 4 or 5, and they are also reusable, since each is given with a interface

specification including any interference constraints. For some of the more interesting implemen-

tations, correctness arguments are Rketched. The object types include locations, accumulators.

counters. locks. (unbounded) queues. and mappings. For some of these types, implementations

have already been described in the literature; in those cases we include a comparison between

the previously published implementations and ours.

In addition to being interesting in their own right, these implementations also illustrate

some general principles of parallel programming. The most widely accepted method for imple-

menting concurrent data types is the use of critical regions. For parallel programs in which

most computation involves shared objects, placing all accesses in critical regions results in fake

parallelism, since threads must wait for access to any shared object. [Her90] gives a different

technique for implementing concurrent objects; it allows both mutating and non-mutating op-

erations to proceed in parallel, but mutating operations may have to redo their work if another

mutating operation is executing concurrently. Both techniques as useful in certain situations,

but neither should be used exclusively. We offer other techniques, and describe the performance

trade-offs that make one technique better than others in a given circumstance.

One of the implementations, that of the mapping type, is particularly interesting. First,

the implementation only allows for access by a fixed number of concurrent threads, which gives

its specification a unique kind of interference constraint. We call these objects multi-ported

objects. In our programs, multi-ported objects are used to reduce contention; we believe such

objects are also useful for achieving locality of access on architectures in which memory is not a

uniform distance from each processor. The implementation of the assign operation on mappings

is also novel, as it uses backoff to handle collisions in key assignments; it was chosen after more

18



obvious implementations had been tried and discarded.

1.3.3 Designing P arallel Programs

In Chapter 4 we present transition.based development of parallel programs. Fundamental to
the approach is the separation of correctness and performance concerns; the approach has four
distinct steps, each having explicit correctness requirements and performance goals. Modular-
ity is achieved by requiring that data type implementations meet the correctness conditions

presented in Chapter 2. Good performance is achieved by addressing each of the performance

concerns outlined in Section 1.1.1:

" Insufficient parallelism. In the transition-based approach, data and process parallelism
are supported within a single framework. In the earliest stages of design, the programmer

is encouraged think about a parallel solution to the problem, so that synchronization

and serialization are added only as necessary. This technique uncovers program level

parallelism, i.e., parallelism within the highest level algorithm. In contrast, methods
that start from a traditional sequential programming model tend to retain a sequential
algorithm at the program level, and they may result in unnecessary synchronization points

that are artifacts of the development process.

" Over-abundant parallelism. Part of the overhead from thread creation and manage-

ment comes from using an overly general system scheduler. By using application-specific

scheduling, which runs on top of a fixed set of system-provided threads, this overhead

can be avoided. Favoring coarse over fine grained parallelism also avoids some of the
cost of parallelism. By allowing for performance tuning (e.g., scheduling and granularity
adjustments) late in the program development process, a balance can be found between

too much parallelism and not enough parallelism.

" Fake parallelism. The underlying causes of fake parallelism are lack of communication

between tasks, which results in unnecessary work, and too much communication, which

results in thread idle time while waiting for communication. Our strategy is to have

frequent communication through shared mutable objects, but to control access using short
critical regions (usually a constant number of instructions). Procedures are never required

19



to block (or wait) as part of their specification; instead, procedures return quickly with

an exception. indicating to the caller that the operation could not be performed.

In the transition-based approach, a program is described at a high level by a transition-

axiom specification. which is comprised of a set of transition axioms that define the legal state

changes of the program. The first transition-axiom specification should reflect the programmer's

intuition of what basic tasks must be performed, but it may not describe an efficient program.

or it may not be implementable by the rules of our approach. The second step of development

is to refine the transition axiom specification into another transition axiom specification that

corresponds to an efficient implementation. In Chapter 4 we give criteria for such specifications

and describe specific refinements that help meet those criteria. In the third step of development.

the programmer implements a transition procedure for each transition axiom; the procedure

performs a state change that is consistent with the transition axiom. The procedures must be

synchronized to ensure that any concurrent execution is correct, in the sense that no illegal

state may be reached. The last step of program development is to determine the task grain

size and describe a dynamic scheduling strategy for the transition procedures. In practice. the

process of choosing a level of granularity and a scheduling strategy is iterative, and usually

involves a number of rounds of analysis and tuning.

The transition-based approach is applied to the term matching problem, with thorough

discussion of how the program is designed, implemented, and performance tuned. We present

careful correctness arguments for pieces of the design, demonstrating a modular approach to

reasoning about this style of program. Performance numbers are presented based on experi-

ments run on a five processor Firefly [TSJ87].

1.3.4 Parallel Completion

Chapter 5 contains a proof of concept for the transition-based approach. We give a parallel

solution to the completion problem for term rewriting systems, bringing together the work

in the earlier chapters. The design and implementation is done using the transition-based

approach outlined in Chapter 4, notions of abstraction and correctness defined in Chapter 2,

and concurrent object specifications and implementations given in Chapter 3. The program

produced is reasonably large (about ten thousand lines of C), modular, and efficient.
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The completion problem displays interesting properties for parallelism that are typical of
many symbolic programs, so the existence of a carefully designed parallel solution should offer
information on the use of parallelism across a spectrum of symbolic applications. The Knuth-
Bendix procedure, a sequential solution to the completion problem, has been extensively stud-
ied, modified, and extended. (See [Buc85] for a historical survey of completion procedures.
with more than 200 references that include algorithms, applications, and implementations.)

Our procedure is significant from an algorithmic standpoint, since the parallel procedure differs
in non-trivial ways from sequential ones.

The implementation of our design demonstrates that it is of practical, as well as theoretical.
interest. The implementation was run on a Firefly with six CVAX processors. On all realistic
examples, including several taken from the literature, parallelism proves to be beneficial. On
some larger examples the performance gain from six-fold parallelism is between four and five.
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Chapter 2

Specifying Concurrent Data Types

The programming approach introduced in Chapter 4 depends on having data type implemen-

tations that can be treated abstractly by the rest of the program. In general. abstraction is

used to hide unnecessary implementation details from a user: in parallel programs, low level

concurrency is often one of those details. A concurrent data type has operations that can be

viewed as executing indivisibly, when in fact they may execute concurrently with one another.

Note that the parallelism is in the use of a concurrent data type: whether or not individual op-

erations are implemented using parallelism is orthogonal to the question of whether operations

can be invoked concurrently.

In this chapter we consider the problem of specifying concurrent data types and address a

number of questions. What do specifications of concurrent data types look like? What does

it mean for an implementation to be correct with respect to a specification? How does the

choice of a correctness notion restrict implementations? These questions have already been

asked and answered for sequential data types; we are interested in how the answers differ for

parallel programs.

There are a number of concepts in this chapter that are essential to the rest of the thesis.

The first is a notion of correctness for concurrent d2ta types, linearizability modulo an interfer-

ence specification, which generalizes the notion of linearizability defined by Herlihy and Wing

[HW90]. Linearizability places a requirement on all operations of a data type, implicitly assum-

ing that all operations may be invoked concurrently. Our generalization allows operations to

interfere, meaning their behavior is undefined if they are invoked concurrently; we incorporate
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this interference information into the specification of a data type to facilitate code reuse. The

result is a correctness condition that is potentially as powerful as linearizability. but can be

tailored to the needs of a particular kind of concurrency. In Chapter 3, we give examples of

data types with interference relations, and demonstrate that they can sometimes allow for a

simpler or more efficient implementation.

The second important concept in this chapter is another correctness notion called non-

stopping; it is analogous to the termination requirement on sequential operations but allows for

nonterminating executions in certain pathological cases that can be avoided in practice. Non-

stopping is strictly weaker than the related notion of wait-freeness defined by Herlihy [Her88]. A

key difference between the two notions is that wat-freeness requires termination in the presence

of processor failures, whereas non-stopping places no constraints on termination in the presence

of failures. Wait-free data types are attractive in principle, but they often require complicated

algorithms and bear a significant performance overhead.1 Non-stopping data types have lower

overhead, and the notion corresponds to the unstated condition used by many programmers in

practice: non-stopping operations cannot dead-lock, and any finite number of invocations must

eventually terminate.

In addition to these key notions, this chapter contains material that supports the rest of

the thesis. In Section 2.1. we describe an approach to writing specifications for concurrent

data types that will be used in Chapters 3, 4, and 5. Specifications are used in this chapter

to demonstrate the difference between various correctness notions and in the other chapters to

describe the modules in our programs.

The final piece of background material in this chapter is a formal model for concurrent data

types, which is an adaptation of the model used by Herlihy and Wing [HW90]. The model is

presented in Section 2.2, along with an intuitive pictorial version that is used for the examples.

We have tried to include sufficiently detailed informal descriptions and enough examples that

the reader may skip the formal definitions and still read the rest of the thesis.

The correctness notions are defined in Sections 2.3 through 2.5. Section 2.3 gives two

definitions from the literature: sequential consistency [Lam79] and linearizability [HW90]. We

compare the two notions and explain our choice of linearizability as the basis of correctness

'Herlihy and Tuttle [RT901 show theoretical lower bounds on the performance of wait-free data types.
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for concurrent data types in this thesis. In Section 2.4, we argue that the original definition

of linearizability is too restrictive, and therefore add the ability to qualify linearizability by

adding an interference specification. Section 2.5 addresses the problem of termination (or more

generally liveness) for concurrent data type opeiations, and presents our notion of non-stopping

implementations. We end the chapter i. Section 2.6 with a discussion of the key points and

some related work.

2.1 An Approach to Writing Specifications

An abstraction is a unit of program text that can be independently designed, implemented.

tested, and proved correct. Each of these activities is done with respect to an interface specifi-

cation that constrains the behavior of the program text. Thus, the ability to perform abstraction

is intimately tied to the expressiveness of interface specifications. 2

One approach to writing interface specifications is to use conventional specifications that

describe serial data types, but to change the notion of correctness to allow for concurrency

among operations. We employ this approach here. It is similar to Lamport's approach to

specifying concurrent program modules [LamB3, Lam89], except that his specifications include

a type-specific liveness constraint, while we use a fixed liveness property on all types.

A correctness notions for concurrent objects depends on a correctness notion for serial

objects with respect to some serial specifications; the choice of specification language and serial

correctness notion are largely independent of concurrency considerations. Our specifications

are informal although they have a similar structure to interface specifications written in the

Larch family of formal specification languages (GHW85, Win83]. Others have used Larch-style

specifications to specify concurrent operations [HW90, BGHL87]. We describe the meaning of

our specifications and a serial correctness notion through an example.

Figure 2-1 shows an example of an interface specification for a container type. (We present

our programs in a variant of the CLU programming language [LAB+81], discussed in further

detail in Chapter 3.) The container specification is polymorphic; the type parameter is used to

'In Chapters 4 and S we use another kind of specification, transition axiom spe-ifications, that specify parallel
aJgorithms Here and in Chapter 3, where a! specifications define data type interfaces rather than algorithms,
we sometimes refer to interface specifications more simply as specifications.
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container = datatype [t: type] has create, insert, choose

create = procedure () returns (container)
ensures: returns an empty container

insert = procedure (c: container, e: t) returns (int)
ensures: adds e to c

choose = procedure (c. container) returns (t) signals (empty)
ensures: if c is empty then the empty signal is raised.

otherwise an element of c is removed and returned

waiting-choose = procedure (c: container) returns (t)
when: c is not empty
ensures: an element of c is removed and returned

conditional-choose = procedure (c: container) returns (t)
requires: c is not empty
ensures: an element of c is removed and returned

Figure 2-1: Specification of a container type.

allow containers of any type of element. The insert operation takes an element of type t. and

the three different choose operations return an element of type t. The specifications of choose.

waiting.choose, and conditionaLchoose describe operations that have the same behavior on

non-empty containers: an element of the container is chosen, deleted, and returned. However.

the three operations differ in their behavior on empty containers. The choose operation will

raise the signal empty if the container is empty. Signals in CLU are considered alternate forms

of termination for an operation, and need not cause the program to halt if the calling procedure

has code to handle the raised signal; an operation cannot, however, be resumed once it has

signaled. The other two forms of choose are described below.

Each operation on a data type is specified by three components: an ensures clause, a requires

clause, and a when clause. The requires and when clauses are optional; a missing clause has the

same meaning as the clause with the single predicate true. Together the three clauses define a

relation on pairs of states, called the pre and post states. The clauses are used as follows:

1. A requires clause places a constraint on the (abstract) input values in the state before

the operation executes (the pre state). It is the caller's responsibility to make sure the

requires clause is true, and if it is not true, the behavior of the operation is unconstrained.

26



The specification of conditionaLchoose contains a requires clause with the condition that

c is non-empty. Thus, the implementor of conditionaLchoose may assume that c is never

empty. In parallel programs, it is rarely useful to have a requires clause on a mutable

shared object, because the value of such an object can change between the time the user

invokes the operation and the time the operation begins executing. It is therefore difficult

for the caller to guarantee that requires condition will be true when the operation starts

executing.

2. A when clause also places a constraint on the (abstract) input values in the pre state.

However, the responsibility for satisfying a when clause is with the implementation of

the operation, rather than the caller. The implementation is not allowed to take any

observable action until the when clause is true. In sequential programs, when clauses

are not useful, because if an operation is invoked with a false when clause, it will never

terminate-it must "hang." In parallel programs, when clauses can be quite useful; for

example, the when clause in the waiting-choose specification states that c must be non-

empty, if the operation is invoked with c empty, it must wait for some other thread to

add elements before mutating c or returning. We refer to specifications with non-trivial

when clauses as waiting specifications.

3. The ensures clauses relates the pre state to the set of possible post states, which exist when

the procedure returns. In Figure 2-1, all of the choose specifications are nondeterministic

in the choice of element to be deleted, so there are many possible post states for a given

pre state. The responsibility for the ensures clauses resides with the implementor of the

operation.

A state is an assignment of values to objects, and an execution is a possibly infinite se-

quence of states, with each consecutive pair of states representing the pre and post states of

some procedure invocation. A more precise characterization of states for a real programming

language, and interpretations of predicates in those states, would require a formal language

and a richer model than we wish to pursue here. Wing [Win83] gives such an interpretation for

formal specifications in sequential CLU programs, and Goldman [GL90] gives a detailed model

of shared state for concurrent operations.
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Given a specification for some procedure P. a state pair (pre, post) is said to be a legal

execution of P if either:

1. the requires clause is false in pre, or

2. the when clause is true in pre and the ensures clause is tr-le in the pair pre and post.

Note the difference between the requires clause and the when clause: if the requires clause is

false in pre, then any post state is legal, but if the when clause in false in pre, then no post state

is legal. A data type specification is given by a set of procedure specifications. which define the

operations on objects of the type, and by induction, the set of possible values for objects of the

type.

2.2 A Model

To distinguish between various notions of correctness, a model of parallel executions is needed.

We present an object-based model in which a set of threads (light-weight processes with shared

address space) apply procedures to individual objects. The model, which is adapted from

[HW901, is simple, yet rich enough to support the definition of most correctness not'ons. By

object-based we mean that the state of a program consists of a set of abstract objects; each data

type defines a class of objects, and that each operation is associated with a type and modifies

at most a single object of that type. By convention, the first argument to each operation is

the one that may be modified. The restriction that operations modify at most one object is

probably too severe in general, but is met by the examples in this thesis. In the discussion

below, we comment on the reasons for the restriction.

An operation is represented by an invocation event, occurring at the instant the procedure

call is made, and a response event, occurring when the procedure returns. While procedure

applications can overlap in time, we assume that the invocation and response events are totally

ordered.

A history is a possibly infinite sequence of invocation and response events. An invocation

event of procedure P on object z by thread T is written (P(z, vl ..., v.), T), where vl, ..., v,, is

the (possibly empty) list of the arguments (actuals) to P. Procedures may terminate either by

returning or by signaling an exception. A response event of procedure P for thread T is written
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(R(v1,.....v'),T), where R is termination condition of P and vl,...,v,, is a possibly empty

list of return values. (A termination condition is either a signal name or the special name rtn.

which denotes a normal return.)

A sequential history is an alternating sequence of invocation and response events, starting

with an invocation event. Given a history H and thread T, the thread subhistory of H at T.

written HIT, is the subsequence of events in H that contain T. A history H is well-formed

if for every thread T, HIT is sequential. We consider only well-formed histories here, since

the histories generated from actual programs are always well-formed. An invocation event i in

history H corresponds to an event r if both contain the same thread T, i occurs before r, and

no other event by T occurs between them. (By well-formedness, when r exists it must be a

response event.) If H is a history and z is an object, the object subhistory of H at x, written

HIx, is the subsequence of invocations events containing x (naming x as the first argument)

and their corresponding response events.

Given a history H, an operation is a pair of events (i, r) such that i is an invocation event

and r is the corresponding response event in H. An operation is the formal representation of a

procedure application. An operation consisting of invocation (P(z, v1, ..., v, ),T) and response

(R(w 1 , ...,w.,),T) is written more concisely as (P(x,v1 ,... v,,)/R(w 1 ,....w,),T), and when T is

clear from context, both T and the surrounding angle brackets are dropped. When an invocation

event in a history H has no corresponding response event, it is called a pending invocation.

An operation ol is said to precede another 02 in history H if and only if the response

event of ol occurs before the invocation event of o2. This defines an irreflexive partial order.

denoted ol .02, and is called the global time order of H. The program order of H (-<H).9.t. 0 P.

on operations is the global time order restricted to pairs of operations of the same thread, i.e..

if o t.< 02 and both ol and 02 contain the same thread then ol -<H. 02. Note that any two

operations of the same thread are comparable in both orderings, because thread subhistories

are sequential.

To relate sequential histories to specifications, we associate a sequence of states with the

sequence of events, and use the state to assign a value each object named in the history. A

sequential history (ii,ri), (i 2, r 2) ... is legal if there exists a sequence of states so, si .... such

that for each operation, (ik, rk) of procedure Pk, the pair of states (sk-1, sk) is a legal execution
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IIII

Tinsert( x, 2 ) /rtn choose( y)l/rtn() choose( y)l/empty

insert(y, 1)/rtn choose(x)/rtn(2)

- time -

Figure 2-2: An Example History

of Pk.

The history model is precise, but pictures are more convenient for presenting the examples.

Figure 2-2 gives a pictorial view of a history in which threads T and T2 are accessing two

shared containers of integers, x and y, which are initially empty. The horizontal axis is time.

and points on the vertical axis are threads. The duration of an operation is represented by

a line segment (where the endpoints mark the time of invocation and response events of the

formal model). The history is not sequential because operations of T1 and T2 overlap in time.

2.3 Strong Correctness

We begin by presenting two correctness notions from the literature, sequential consistency

[Lam79] and linearizability [HW90]. These definitions extend the notion of correct sequential

executions, which were called legal executions in the sequential case. to parallel executions.

We classify them as strong notions because they place no restrictions on the use of operations;

an implementation must behave according to its specification in an environment with arLttrary

concurrency. Sequential consistency is the correctness notion assumed on memory operations in

Chapter 3, while linearizability, as extended in Section 2.4, is the correctness notion for all data

types other than shared memory. We justify this lack of uniformity in the discussion following

the definitions.

Sequential Consistency

The notion of sequential consistency was proposed in [Lam79] as a requirement on shared

memory for multiprocessors. It depends on the following definition of equivalence for histories.

Definition. Two histories H1 and H 2 are equivalent if for every thread T, HIIT = H21T.
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When a history contains pending invocations, a complication arises in defining correctness.

In some cases the effect of a pending invocation has been observed by other threads in the

history. For example. a concurrent choose operation may return an element of a concurrent

insert operation, even though the insert has not yet returned. To handle pending invocations.

we use the following: if H' can be built from H by appending a finite number of response

events, then H' is a response extension of H. It is not always possible to complete the pending

invocations in this manner when the operations have waiting specifications, since the pending

invocation may have no legal response event. For example, if a history ends with a pending

waiting-choose operation, but the container is empty, then there are no response events allowed

by the specification of waiting-choose. In this case, the pending invocations are ignored: let

nonpending(H) be the subsequence of H with all pending invocations removed.

Definition. H is sequentially consistent if there exists a response extension H.e of H and a

legal sequential history H,,q such that H,,q is equivalent to nonpending(H,...).

Informally, sequential consistency says that operations must appear to take effect instanta-

neously in program order. For memory operations read and write with the obvious sequential

specifications, requiring the appearance of instantaneous behavior means that a read will never

see a half-written value, and two writes will not leave a memory cell with partial results of

each. Requiring that operations take effect in program order means that if a thread writes the

value "I" into a cell and then reads the cell, the value returned will be either "1" or something

written later. rather than an earlier value.

For pedagogical reasons, we also define local sequential consistency, which requires that

individual objects are sequentially consistent.

Definition. H is locally sequentially consistent if for each object z, HJx is sequentially consis-

tent.

Any history that is sequentially consistent is also locally sequentially consistent. However, ex-

amples given in [HW90] and below demonstrate that the converse is not true, so local sequential

consistency is strictly weaker than sequential consistency.
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Linearizability

Linearizability is stronger than sequential consistency. It was proposed by Herlihy and Wing

[HW90] as a correctness criterion for abstract data types in parallel programs, and Lamport

used it as a condition on shared memory registers, which were called "atomic" registers [Lam80].

Definition. H is linearizable if there exists a response extension Hres of H, and a legal

sequential history Hseq, such that Hseq is equivalent to nonpending(Hes) and -<HresC-< ... H.eq

As with sequential consistency, linearizability says that operations must appear to take

effect instantaneously in program order, but it has the additional requirement that order of

operations in the sequential history must be consistent with their order in the concurrent one.

In effect, this means that each operation's instant (the point at which it appears to take effect ).

must be sometime between its invocation and response. An operation cannot take effect before

the user has called the procedure, or after the procedure has returned control to the caller.

Two operations that overlap in time can be "linearized" in either order, but ones that do not

overlap cannot be reordered.

Both correctness notions have analogs in the theory for distributed transactions. If each

transaction is equated with a single operation in our model, sequential consistency corresponds

to serializability and linearizability corresponds to the histories in class Q [Pap79I. The fun-

damental difference between the two problem domains is that transactions are generally an

arbitrary sequence of operations terminated by a special commit operation. Serialization is

done on an entire transaction (i.e.. a sequence of operations) rather than on individual opera-

tions. Protocols for serializability are typically not practical in a multiprocessor environment

because they do not allow sufficient concurrency between individual operations on the same

object.

Sequential consistency and linearizability are both extended from a single history to an

implementation by universally quantifying over histories. An implementation of a data type

specification S produces a history when it is executed. Such an implementation is sequentially

consistent (linearizable) if for all histories H that it can produce, H is sequentially consistent

(linearizable). It does not make sense to say that a single operation is sequentially consistent

or linearizable without s ,ying what other operations may appear in a history with it. However,
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write(x, 2) read(x)/(1)

write(x, 1) read(x)/(1)

Figure 2-3: Linearizable history on shared location x

when the set of operations of interest is clear from context, because we know the type of an

object for example, then we sometimes talk about the correctness properties of a particular

operation.

Sequential Consistency vs. Linearizability

Using shared memory operations as an example, we compare sequential consistency and linear-

izabilitv. For convenience, we assume that all locations are initially zero, and since neither read

nor write raises an exception, we omit the termination condition, rtn, from the operations.

Even with the stronger notion of linearizability and deterministic specifications, the be-

havior of a concurrent execution is nondeterministic, because two overlapping operations can

be linearized in either order. For example, assuming the variable x is initially 0, the history

in Figure 2-3 is linearizable with T1 's write taking effect before the overlapping write of T2.

However, the history would also be linearizable if T2's read returned 2; in that case T's write

takes effect before T2"s. A variation that would not be linearizable is the one in which T, reads

1 and T2 reads 2.

Linearizability is arguably stronger than necessary. It requires consistency with the real

time ordering (i.e., "wall clock" time), which can be seen only by an omniscient observer, not

by a process within the system. Consider, for example, the history in Figure 2-4. It is not

linearizable because TI's read returns the initial value, 0, even though it started after T2's write

had finished. However, if these are the only events in the system, then the programmer who

wrote the program producing this history could not have known that T1's read would happen

after T2 's write: there is no synchronization or other communication that prevented T from

running faster and invoking the read earlier. Thus, from the user's perspective, the history is

acceptable; the memory operations are behaving one would expect.
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T, read(x)/(O)

write(x, 1) read(x)/(1)

Figure 2-4: History that is sequentially consistent, but not linearizable

The advantage to linearizability over sequential consistency is that a linearizable system

of objects can be built one object at a time, rather than being built as an entire system.

The property of linearizability that makes this possible is called compositionality and given in

Theorem 1. The proof of this theorem was presented by Herlihy and Wing [HW90], although

the result was shown in a more abstract framework by Lamport [Lam80].

Theorem 1 [HW90] H is linearizable iff for all objects x, HIx is linearizable.

Thus, implementations of linearizable objects can be composed and generic object implemen-

tations for common data types can be reused between different applications. For example.

given a linearizable implementation of a container, one can build a state containing two in-

stances of containers, and know that histories of multiple threads accessing the two containers

will be linearizable. Or, given a linearizable implementation of a container and a linearizable

implementation of a stack, histories that access container objects and stack objects will be

linearizable. Furthermore, since object implementations are reusable, libraries of such imple-

mentations could be a basis for large-scale software development.

Sequential consistency is not compositional, because a history that is sequentially consistent

at each object is not necessarily sequentially consistent at the global level. We demonstrate this

point by the shared memory example in Figure 2-5. History H1 is sequentially consistent with

the read by T1 linearized before the write by T2. H2 acts on shared object y rather than x,

but is otherwise the mirror image of HI, and is also sequentially consistent. History H 3 is not

sequentially consistent, because the two reads cannot both be sequentialized ahead of the writes

unless the program order is violated. H3 is, however, locally sequentially consistent, since each

of its objects subhistories are sequentially consistent. Local sequential consistency would be

the property viewed by the user of a system in which each object is sequentially consistent.

Compositionality of modules is important in building large software systems, but is not
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History H1: T, read(x)/(0)

write(z. 1)

write(y, 1)History/t 2: T

T: read(y)/(O)

History H3 = H, + H2 : T, write(y, 1) read(x)/(O)

T2  write(x. 1) read(y)/(O)

Figure 2-5: Sequential consistency is not compositional

used when a complete system is designed and implemented as a single unit. Given a system of

sequentially consistent operations, once cannot write a program using only those operations that

will determine whether or not the system is linearizable; it is only in composing subsystems that

linearizability becomes important. A shared memory system, for example, is built as a complete

system, not as a collection of individual memory cells, so sequential consistency is adequate as

a correctness condition for shared memory. Furthermore, there appears to be a performance

penalty to using linearizability rather than sequential consistency, since a straightforward way of

turning a sequentially consistent implementation into a linearizable one is to add delays, making

each operation wait until the effect of the operation is observable by every other thread. Attiva

and Welch [AW91] prove that linearizable memory is, for a particular abstract machine model.

more expensive than sequentially consistent memory.

For these reasons we assume that a machine provides sequentially consistent built-in oper-

ations, but require that software operations built on top are linearizable. The assumption on

machine operations covers not only the usual read and write operations, but also basic syn-

chronization operations, such as test~set, and thread manipulation operations, such as fork

and join. Given a set of sequentially consistent primitives on which linearizable operations are

35



built, the low level primitives can be mixed with a higher level inearizable operations, and the

resulting system will be sequentially consistent.

Before proceeding with variations of strong correctness, we remark on the underlying as-

sumption of our object-based model that each operation acts on at most one object. 3 This

assumption is crucial to the compositionality of linearizability, because Theorem 1 depends on

object subhistories being pairwise disjoint, a property that would not hold if operations could

act on more than one object. As we mentioned earlier, the assumption holds for the examples

in this thesis, but the loss in expressive power that enables composition may not be a good

trade-off in general.

2.4 Conditional Correctness

There are many cases in which parallel code does not depend on the full power of sequential con-

sistency or linearizability, because all accesses to shared objects are done within critical regions.

In this case. the programmer is relying on the linearizability of synchronization operations to

guarantee mutual exclusion. A conditional notion of correctness based on this idea can allow

more efficient implementations of the lower level abstractions. Conditional correctness notions

have appeared in the multiprocessor literature for implementations of weak shared memory.

where memory is shown to be sequentially consistent given certain assumptions about how

memory operations are used [DS88. AH90b, SS881. We generalize these concepts to arbitrary

shared data types and give a linguistic mechanism for specifying the restrictions on use.

In this section we assume that the user of an abstraction is willing to make promises about

how the operations will be used. Such promises are not new to parallel programs. In sequential

programs. the requires claLue on procedures constitutes such a promise; it states assumptions

about the state in which a procedure will be invoked. In parallel programs, the promise will

be an interference specification, which is an agreement between user and implementor that a

certain set of operations will not be invoked concurrently.

An interference specification is an addition to a data type specification, indicating that

certain pairs of operations interfere, and therefore should not be executed concurrently. It

3 By "act on" we mean that the operation either mutates or observes a mutable object.
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is the responsibility of the user of an object to ensure that no interfering operations are in-

voked concurrently. If the user fails to ensure this non-interference, then the behavior of the

implementation is unconstrained. In general. an agreement in the form of a synchronization

convention is needed between implementors of all threads in order to ensure non-interference.

For example. a procedure P will be applied to object x only when holding a particular lock y.

In this case, interference is prevented between two invocations of P by using a linearizable lock

object y. (We include a specification of locks in Figure 2-6 along with the detailed examples that

use locks.) To ensure non-interference we combine the interfering operations with operations

that have no interference, such as the acquire and release operations on locks.

Formally, our model is extended to include a notion of interfering operatior.s. With each

data type D specified in a fixed set of data type specifications S. associate a binary relation

ID on invocation events. ID is called an interference relation and is subject to the following

constraints:

1. ("1 ,i 2 ) E ID implies (i 2 ,ii) E ID. (Interference relations are symmetric.)

2. ((PI(x,vl,...,vn),T1),(P2(y,zl,...,z,m),T2)) E ID implies x = y. (Procedures only inter-

fere when applied to the same object.)

3. ((PI(X,Vl, ...,VnXT),(P 2(,Zi,z...,Zm),T 2)) E ID impliesxisof typeD. (The interference

relation for D only constrains objects of type D).

Note that an interference relation need not be transitive or reflexive. We refer to the union of

the ID's as the interference part of S, or simply as an interference specification.

Roughly speaking, a history contains interference if there are two overlapping operations

that have interfering invocation events. The possibility of pending invocations complicates the

precise statement of interference, since pending invocations are technically not operations. Let

S be a set of data type specifications with interference part 1, and let H be a (possibly infinite)

history of operations specified in S.

Definition. A history H contains interference if there are two distinct invocation events i1 . 12

in H such that (11, i2) E I and one of the following is true:

1. both il and i2 are pending, or
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2. i1 has a corresponding response event r,, and i1 -<H. i2 H<Hr ri.

A history that does not contain interference is interference free.

We now give the main definition of this section, which is a conditional form of linearizability.

Definition. H is linearizable modulo interference specification I if either H is linearizable or

H contains interference.

Linearizability modulo an interference specification is weaker than linearizability, although when

the interference specification is empty, the two notions are equivalent. The interference specifi-

cation acts as an additional contract between the user and the implementor of a set of objects:

the user must ensure that histories are interference-free, and the implementor must (condition-

ally) ensure linearizability. Henceforth. when the existence of an interference specification is

clear from context. we simply use linearizability to mean linearizability modulo the interference

specification.

The compositionality of linearizability (Theorem 1) provides the user with means of ensuring

that histories are interference-free. If synchronization objects are linearizable, then subhistorie-

containing only those objects must be linearizable. The specification of a lock asserts that a

lock can orly be acquired when it isn't already held, so if two threads attempt to acquire a lock

simultaneously, only one may succeed at a time. The other thread's acquire operation will be

linearized after the first one's release.

Although the general form of an interference specification is a relation on invocation events.

which include operand values, many interesting interference specifications can be stated more

simply as a relation on procedures. Consider the container example in Figure 2-1 with insert

and choose operations. If a print operation is added to an existing implementation of containers.

the insert and choose operations would probably have to be modified to synchronize with print,

so that a consistent view of the object would be printed. The synchronization would add

overhead, probably in the form of lock acquisition, to insert and choose. Some of this overhead

would be incurred regardless of whether print was being used. A better solution is to leave

synchronization to the user of the container by addinb an interference specification stating that

print interferes with both insert and choosL.

To formally denote an interference specification of this kind, we use a procedural interference
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relation RD, which is a symmetric binary relation on the procedures defined on type D. We

then extend RD to an interference relation ID as follows. Let (P1, P2 ) be a pair of procedures in

RD, where P and P2 may be the same procedure. If il is an invocation event of P on object

x, and i2 is an invocation event of P2 on x, then (ii, i2 ) is in ID; ID contains all such pairs and

nothing else. Procedures in RD are said to interfere.

Some interference relations cannot be defined by a relation on procedures, because they

depend on the argument values. In Chapter 3, we give an example of such an interference

relation in the specification for a mapping type. We describe the interference relations for the

mapping implementation directly, and demonstrate that it is not an extension of a relation on

procedures.

2.5 A Liveness Property

Linearizability, sequential consistency, and all their variants are safety properties; they make

a statement about what bad things cannot happen in an execution. More precisely, safety

properties are prefix closed: a safety property that holds on history H also holds on any prefix

of H. A liveness property, on the other hand, makes a statement about what good things must

eventually happen. For example, a procedure must eventually terminate: a scheduler must

eventually allow every thread to run: a semaphore must eventually be granted to a waiting

thread.

Liveness properties can be formalized in a temporal logic, of which there are many examples.

including Lamport's Temporal Logic of Actions, which was designed to be simple and usable

in real world examples [Lam9O]. In Chapters 4 and 5, where entire parallel programs are

described at an abstract level, some examples of application-specific liveness properties are

informally stated. For the concurrent objects discussed here and implemented in Chapter 3.

we choose a particular liveness property, non-stopping, for all data types. This limits the class

of implementations that are considered correct, but the programming model is simplified by

having a single liveness property for all data types.

Roughly, non-stopping means that in any execution in which some procedure is allowed to

terminate, some procedure must eventually terminate. The meaning of "allowed" depends on

the set of specifications, as well as the safety part of the correctness condition on data types.
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lock = datatype has create, acquire, release

create = procedure () returns (lock)
ensures: returns a new (unlocked) lock

acquire = procedure (/: lock)
when: 1 is unlocked
ensures: I becomes locked

release = procedure ( : lock)
ensures: I becomes unlocked

end lock

Figure 2-6: Specification of locking mechanism

In the following discussion we use linearizability (possibly modulo an interf-rence specification)

as the safety property.

Recall from Section 2.1 that a procedure specification is waiting if there are states in which

the procedure is not allowed to terminate (or make any other observable state change). One

common example of a waiting specification is the specification of a acquire primitive on locks;

Figure 2-6 gives a specification of the lock data type. The acquire procedure is not allowed

to return until it detects a state in which the lock object x is available. In defining a liveness

property. we distinguish between a specification that requires waiting, and an implementation

that waits when the specification does not mandate it. A non-stopping data type implementa-

tion is one that waits only when its specification requires that it wait. Thus, the definition of

non-stopping, which is the condition on implementations, depends on the notion of non-waiting,

which is a condition on specifications. Examples of stopping implementations are procedures

that loop forever, and procedures that deadlock when invoked concurrently; from the users per-

spective these are two cases are indistinguishable, since in both cases the procedure appears to

stops before returning. We require that all operations on a concurrent objecL are non-stopping.

The analogous condition from sequential programs is that all operations are implicitly required

to terminate.

While procedures that stop arbitrarily are unusable, procedures that stop on the when

clause of a waiting specifications can be quite useful. So far, we have seen two examples

of waiting procedure specifications: the acquire procedure and the waiting-choose procedure
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for containers. Chapter 3 gives a number of object implementations. but the only one with

a waiting procedure is the lock type. We argue that non-waiting procedures are easier to

schedule efficiently. and therefore limit waiting specifications to synchronization objects. A

history containing only operations that non-waiting (as well as non-stopping) has the nice

property that all the operations will eventually terminate, once the user stops invoking new

operations.

In the restricted case that all specifications are non-waiting, the non-stopping condition

means that every finite execution is free of pending invocations, i.e., every operation eventually

terminates.

To define non-stopping, we make use of the following notion of response extendible; it charac-

terizes those histories having at least one pending procedure invocation that could be completed

with a response event. Let H • r denote the history formed by appending event r to the end of

H.

Definition. A finite history H is response extendible if there exists a response event r. such

that H • r is well-formed and linearizable.

A history that is not response extendible is called unextendible. Note that a history without

pending invocations is unextendible, although the existence of pending invocations is not suffi-

cient to make a history extendible. Figure 2-7 gives an example of a history that has a pending

invocation but is unextendible. There is a single pending invocation, the invocation of acquire

by T2, and the specification of acquire prevents it from returning while z is held by T1 . The

inability to extend a history is a compositional notion: H is unextendible if and only if Hlx is

unextendible for all objects x in H.

The notion of response extendible is used to define non-stopping.

Definition. A history H is stopped if it is finite and response extendible.

An implementation that produces no stopped histories is non-stopping. The history in Figure 2-

8 is stopped, while the history in Figure 2-7 is not stopped. Both histories are finite, and both

have a pending invocation events, but only the history in Figure 2-8, in which T1 has released

the lock z, is response extendible. We remark that the important direction of compositionality

holds for the non-stopping condition: if for all objects x in H, HJx is not stopped, then H is
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T acquire(z) read(z)/(O) write(x, 1)
I I

T2 acquire(z)

Figure 2-7: An unextendible history

T, acquire(z) read(x)/(O) write(x. 1) release(z)

II -- I I II I

T2  
acquire(z)

Figure 2-8: A stopped history

not stopped. The converse is not true, i.e., H may be stopped at some objects and still be an

infinite execution.

Our notion of non-stopping is weaker than two other liveness notions for concurrent objects:

non-blocking and wait-free [Her88, Her90]. Both of those notions require forward progress in

the presence of failures, whereas our model of computation does not admit failures. Typically.

implementing data types to resist failure requires additional overhead, both in programming

difficulty and in performance.

2.6 Discussion

In this chapter we defined two new correctness notions for concurrent data types: linearizability

modulo an interference specification (a safety property), and non-stopping (a liveness property).

All of the data types that are specified and implemented in this thesis will be linearizable.

sometimes with interference specifications. Most of the implementations in Chapter 3 are
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non-stopping, although in one instance it is only non stopping with high probability. The

example implementations in Chapter 3 provide evidence for the practicality of these notions:

the correctness conditions are strong enough to allow modular design and reuse of program

components, but are weak enough that high performance programs can result.

The notion of interference between operations has been exploited in various ways in related

work. As noted earlier, some multiprocessor memory implementations make use of interfer-

ence information to schedule the operations. In particular, the algorithm of [SS88] schedules

memory operations so that memory that is not sequentially consistent at the hardware level

appears sequentially consistent to the programmer. The algorithm requires data flow analysis

to determine which interfering operations may actually execute concurrently, which may limit

its practicality. The FX programming language [GJLS87] uses a kind of interference specifi-

cation on procedures to determine whether two procedures may be executed in parallel. The

approach in FX is conservative-two procedures are not executed concurrently if they contain

interfering memory operations. All of these approaches use interference information at the

level of memory operations, whereas our interference specifications are given at the abstract

level. The reason for using an abstract condition like linearizability is to allow concurrency

between implementations that interfere at the low level, but still compute a correct answer at

the abstract level.

Linearizability would be acceptable from our point of view as a correctness condition on

shared memory. However, we only rely on sequential consistency of memory operations. includ-

ing reads. writes and any synchronization primitives provided by the architecture. Although

many shared memory implementations are actually linearizable, there are proposals for se-

quentially consistent memory that is not linearizable, so we used the weaker assumption that

memory is sequentially consistent. See [AH90a, GLL+90, BR90, DS88, SS88] for examples of

memory implementations that are sequentially consistent but not necessarily linearizable.
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Chapter 3

Implementing Concurrent Data

Types

In this chapter we present specifications and implementations of a number of concurrent data

types. Each of the types is used in the implementation of either matching (Chapter 4) or

completion (Chapter 5). The examples are also interesting in their own right for a number of

reasons:

* Some of the interfaces involve interference specifications, thereby demonstrating the prac-

tical importance of the ideas presented in Chapter 2.

* Some ci our implementations perform dynamic memory allocation, which is a problem

that is often ignored in examples from the literature. Dynamic allocation is essential in

symbolic programs, and can be difficult to do correctly in a parallel environment. (We do

not completely solve the dynamic object problem, as our implementations do not perform

either deallocation or garbage collection.)

* The code makes use of sequentially consistent shared memory, often without the use of

explicit synchronization primitives. This demonstrates the practical power of sequentially

consistent memory, as opposed to weaker models of memory that assume the programmer

will use synchronization around all shared memory accesses [DS88, AH90b].
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" The implementation of the mapping type uses a novel backoff strategy for avoiding colli-

sions in the space of keys being mapped.

* Taken as a whole. the set of data types demonstrate the power of a simple class of ab-

stractions. All implemertatiorr. are non-stopping and linearizable modulo an interference

specification, and with the exception of a small set of synchronization primitives, all pro-

cedures have non-waiting specifications. This is in contrast to richer process-oriented

programming models.

Throughout the chapter we also give general techniques for implementing concurrent objects.

For example, the announcement board structure that is used in the mapping implementation

appears in some of Herlihy's wait-free algorithms [Her90, and the algorithm used for assignment

generalizes Dijkstra's mutual exclusion algorithm [Dij65]. Some of the problems that arise in

the examples are also general. The need for thread-specific data within objects can reduce

contention and improve locality, but it complicates the interface of the object. The most

common example of an object with thread-specific data is a pool of free memory, where separate

memory pools are used to reduce contention, but a global pool is used to refill local pools. We

refer to objects with thread-specific data as multi-ported objects, since each thread has a unique

instance of (or pointer to) the object, but all the instances behave semantically as a single

object.

The presentation in this chapter is bottom-up in that the later implementations make use of

the earlier ones. Before presenting the individual data types, however, we discuss in Section 3.1

some of the design decisions that pervade the implementations in this chapter. Section 3.2 gives

interface specifications for the lowest level abstractions: memory, synchronization primitives.

and counters. Section 3.3 gives some examples of more interesting concurrent objects: queues.

dynamic arrays, and mappings.

3.1 Design Decisions

In Chapter 2 we presented an approach to writing specifications, and we defined correctness no-

tions for implementations of data types. In implementing the data types used in our programs.

we test the expressiveness of the specifications and the generality of the correctness notions.
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We summarize the correctness conditions here, and comment on some of the design constraints

implied by the correctness conditions.

e All data type operations are linearizable. Each operation must appear to take affect

instantaneously, although concurrency can (and does) exist in our implementations.

* The object-based model of Chapter 2 is assumed. Given a data type D, each operation

on D takes a single object of type D, plus some number of values, and modifies at most

the one object.

* With the exception of the acquire procedure on locks, all procedure specifications are non-

waiting. This simplifies scheduling, since a procedure that cannot make progress simply

returns, rather than having to be de-scheduled.

* Each data type is non-stopping. This is a relatively weak liveness requirement that was

chosen to keep overhead low: it prohibits deadlock, but permits a form of livelock that.

with care, can be avoided by the user.

* Interference specifications are allowed. This is done to allow for simpler and more efficient

implementations at some cost to the simplicity of interfaces.

These design constraints are specific to our approach to concurrent data type specification

and implementation, but they do not directly aid or inhibit use of the transition-based approach

in Chapter 4. However, the high-level approach does influence the low-level implementations

in one regard: we assume there is application-specific scheduling, which means the application

program schedules tasks (short-lived computations) on top of the system-level threads (long-

lived computations) [RV89, CG89, JW90]. The scheduling model will be discussed further

in Chapter 4, but for now, the important issue is the interaction between scheduling and

synchronization.

In general, a task that is forced wait for a synchronization event may either busy-wait,

i.e.. spin on a synchronization condition, or it may block, i.e., notify the scheduler that it is

waiting and should therefore be de-scheduled. When blocking synchronization is used with

application-specific scheduling, the operating system scheduler can be notified directly, or the

blocking mechanism can first go through the application scheduler. In either case the price
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of a context switched is paid if the synchronization condition does not hold. When spinning

synchronization is used, neither scheduler is notified, so the overhead of communication with the

scheduler and of possible context switching is avoided. We choose to avoid all communication

with the operating system scheduler, and build spinning synchronization primitives directly

from hardware primitives such as testtset.

There are two potential performance problems with spinning synchronization primitives:

spinning can waste valuable resources if the synchronization condition is not satisfied quickly;

and spinning interacts badly with operating system events such as paging, because the operating

system has no information about synchronization events. We address each of these concerns in

turn.

The first problem with spinning synchronization primitives is that applications with long

and frequent critical regions will waste processor resources. We therefore divide synchronization

conditions into short-term and long-term, and treat the two cases separately.

" A short-term condition is one that is likely to be satisfied within a few instruction cycles.

e.g., entry into a critical region that contains a small fixed number of instructions to be

executed. Short-term conditions are handled by spinning synchronization.

" A long-term condition is one for which the bound on waiting time is known to be long or is

difficult to predict, e.g., waiting for the result of another task's computation. Long-term

conditions are handled by "aborting" the computation and returning to the caller.

In the case of a long-term condition, it is up to the caller to determine whether the opera-

tion should be retried, or whether the caller's own computation should be aborted. A chain of

aborted computations will eventually reach the application scheduler, thereby allowing a dif-

ferent task to be scheduled. The effect of this chain of aborts is similar to having a lower-level

operation notify the application scheduler directly that its task should be de-scheduled, but

scheduler code is greatly simplified by avoiding this sort of de-scheduling. In particular, the

scheduler does not have to manage task contexts for partially executed tasks. Note that our use

of the word "abort" does not imply that an aborting procedure leaves all objects unchanged.

as if it had never been invoked, but that the possibility of aborting is part of the procedure's

specification. An aborting procedure must leave objects in a consistent state so that future op-
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erations will behave correctly: unlike a transaction system, ours does nothing to automatically

ensure consistency of objects on aborts.

The second problem with using spinlocks is that, because the operating system is not noti-

fied of synchronization events, it may de-schedule a thread while it is holding a lock, thereby

preventing other tasks from entering a critical region protected by that lock. We use only as

many threads as there are available processors, in an attempt to reduce the frequency of de-

scheduling by the operating system, but because we do not prevent such de-scheduling entirely.

application performance may be erratic. A more complete solution to the problem of operating

system interaction is given in recent work by Anderson and others [ABLL90]. They modify the

operating system interface to allow the application scheduler to communicate with the operat-

ing system scheduler, making it possible to maintain the invariant that the number of threads

is no greater than the number of available processors. Our approach to building applications

would well-suited to their two-level model of scheduling.

3.2 Specifications of the Hardware Abstractions

We start by specifying the abstractions provided by the Firefly hardware tTSJ87]. The Firefly

has coherent caches that implement sequentially consistent memory.' In addition to read and

write operations, the hardware also has a small set of interlocked instructions, instructions

that are indivisible with respect to each other. The interlocked instructions include a test &set

primitive, as well as an add primitive. Although the interlocked instructions and memory

operations all act on memory locations, we model the memory system as having three different

types of objects: locations, spinlocks, and accumulators. Locations are memory cells with read

and write operations, while spinlocks and accumulators have a read operation and one of the

interlocked instructions. Modeling memory by three different types of objects is cleaner than

using a single memory cell type with the union of the operations, because the built-in write

operation interferes with some of the interlocked instructions. We discuss this point further in

the sections on spinlocks and accumulators.

'The memory abstraction actually meets the stronger requirement of linearizability, but as discussed in
Chapter2, we only depend on sequential consistency.
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location = datatype [t: type] has create, read, write

create = procedure () returns (location)
ensures: returns a new uninitialized location

read = procedure (1: location) returns (t)
ensures: returns the value stored at I.

write = procedure (1: location, v: t)
ensures: v is stored in 1.

end location

Figure 3-1: Specification of locations

3.2.1 Memory Used as Locations

The Firefly provides coherent shared memory, which has the specification given in Figure 3-1.

For uniformity, we refer to create, read, and write, and as procedures, although the procedure

names will not be used explicitly in our programs. Instead, a read operation is implicit in

any reference to a shared location within an expression, and a write is implicit when a shared

location is named on the left-hand side of an assignment statement. Note that read and write

operations involve two different types. so in expressions with location objects there is an implicit

type coercion between a location and value of type t. The effect of the create operation is

obtained in the code by allocating a contiguous sequence of shared memory locations.

3.2.2 Memory Used as Accumulators

Various kind of counters are useful for building higher level abstractions. In addition to the

uses that are prevalent in sequential programs, parallel programs often use counters for syn-

chronization. Counters require some synchronization within their implementation. The obvious

implementation of an add operation, in which a shared counter is read into a local register,

incremented, and then written back does not work in parallel, because two concurrent adds can

read the same value. We make use of two different kinds of counters in our programs, one called

an accumulator (accum), and the other simply called a counter. An accumulator abstraction is

provided by the hardware and is specified here, while the counter abstractions is implemented

in software and is specified in Section 3.3.
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accum = datatype has create, read, add

create = procedure () returns (accum)
ensures: returns a new accumulator set to 0

read = procedure (a: accum) returns (int)
ensures: returns the value of a

add = procedure (a: accum, i: int)
ensures: adds i to a

end accum

Figure 3-2: Specification of accums

A specification for the accum type is given in Figure 3-2. Note that the add operation

changes the value of an accumulator without returning its value. This is an important limi-

tation of accumulators, since it implies that accumulators cannot be used to generate unique

integers for concurrent threads, a synchronization technique used in the queue implementa-

tion below. Nevertheless. accumulators are sufficient for other kinds of synchronization: the

matching program in Chapter 4, for example, uses accumulators for termination detection.

An accum is actually just a memory location, and the read on accums is the same hardware

read that is used on locations. The add operation is an interlocked instruction provided by the

Firefly hardware, but because of the manner in which interlocked instructions are implemented.

the write operation cannot be used on accums. All interlocked instructions are implemented

by a single hardware lock, the interlock lock, which is separate from the arbitration hardware

on the memory bus. Before a processor executes an interlocked instruction it must acquire

the interlock lock; once acquired, the processor executes the interlocked instruction and then

releases the interlock lock. In the case of the (interlocked) add instruction, the hardware

performs a read, followed by an addition, followed by a write, with all three steps done inside

the critical section enforced by the interlock lock. Write instructions do not acquire the interlock

lock. so if an add is executed concurrently with a write, the write may be lost. The following

execution illustrates the problem. Processor P is executing an add of i to shared variable x.

which has the initial value v1, and p.ocessor P2 is executing a write on x with the value v2.

The interleaving of hardware operations is:

1. P, acquires the interlock lock.
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2. P reads the initial value of x. which is vj.
3. P2 writes writes the value v2 into z.

4. P increments v, by the given integer i and writes the result v, + i into x.

The history is not sequentially consistent because the end result should have been either V2 + i,

as if the write had happened before the add, or V2 , as if the write had happened after the add.

The hardware designers could have implemented write so that it did not interfere with add. but

the -ost in performance of writes might have made the memory system unusable. i} Section 3.3

we give a software implementation of a counter type, which is similar to an accurn, but has a

write operation.

Since the problem with write and add is one of interference, it could be addressed by adding

an interference specification to memory. Moreover, the same sort of interference appears with

the test&-set operation on spinlocks. described below, so all three memory abstractions could

be combined into a single abstraction with an appropriate interference specification. In using

memory, however, we always ensure that the interference specification is observed by designating

each memory cell as either a location, an accum, or a spinlock, and consistently using it as such.

It makes the higher level programs more readable if the set of allowed operations on a given

memory cell is a function of its type name.

3.2.3 Memory Used for Spinlocks

Synchronization is sometimes done by waiting for a particular value to appear in a locatiorn

or an accum. but in other cases it is convenient to use a read-modify-write primitive such as

the interlocked instruction test& set. The spinlock data type specified in Figure 3-3 provides

such an operation. Like accumulators, spinlocks are simply memory locations that are being

used for interlocked instructions, and like the add operation on accurns. the test&set operation

on spinlocks interferes with write, so write is not an operation on spinlocks. The test&set

operation atomically tests to see whether the spinlock is held, and if not, acquires it. The reset

operation releases the spinlock.

The specification of spinlocks includes a test operation to read the value of a spinlock without

modifying it. Our applications do not use test, but it is available through a memory read and can

be useful implementing test-and-testFgset style synchronization. See [And89] for a description
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spinlock = datatype has create, testkset. reset

create = procedure () returns (spinlock)
ensures: returns an unlocked spinlock

test&-set = procedure (s: spinlock) returns (bool)
ensures: if s is unlocked then lock s and return true

else leave s locked and return false

test = procedure (s: spinlock) returns (bool)
ensures: if s is unlocked then return true

else return false

reset = procedure (s: spinlock)
ensures: unlock s

end spinlock

Figure 3-3: Specification of spinlocks

of various strategies for using spinlocks, including test-and-testeset, and a discussion of the

relative performance of the strategies.

3.3 Reusable Software Abstractions

In this section we describe some of the linearizable concurrent types that are used in the

matching and completion programs. The first two abstractions, locks and counters, have no

real concurrency, but are lightweight primitives that are used to minimize the overhead of

synchronization in both applications. The queue, dynamic array (dyn.array), and mapping

implementations have varying degrees of concurrency, and they perform dynamic memory al-

location internally when necessary.

3.3.1 Locks

Locks provide a cleaner interface to synchronization than spinlocks. Locks can be implemented

by either blocking or spinning without changing the specification. The lock specification was

included as part of an example in Chapter 2. and it is repeated in Figure 3-4 for completeness.

Recall that synchronization primitives are the exception to the rule that procedures must

have non-waiting specifications. and in particular, the acquire operation has a waiting specifi-
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lock = datatype has create, acquire, release

create =. procedure () returns (lock)
ensures: returns a new unlocked lock

acquire = procedure (1: lock)
when: I is unlocked
ensures: I becomes locked

release = procedure (1: lock)
ensures: I becomes unlocked

end lock

Figure 3-4: Specification of locks

cation. The lock specification is not safe, in that any thread may release a lock held by another

thread- it is only programming convention that prevents this from happening. A safer locking

abstraction could be defined [BGHL87], or, alternatively, programming language restrictions

could enforce the programming convention that locks are always released by the thread that

acquired them [Bir89].

The locks in our programs are implemented using spinlocks: the acquire operation repeatedly

calls test&set until it successfully sets the spinlock and the release procedure calls reset. Our

implementation is not fair, in the sense that one thread may be starved if other threads acquire

and release the lock with high enough frequency. Since one of our goals in writing parallel

programs is to avoid contention by using critical regions sparingly, we have never observed lock

starvation in practice. As the number of processors grows, the possibility of starvation would

also grow, however, it is likely that increased contention would force an alternate implementation

before starvation became a problem.

3.3.2 Counters

A specification of the counter type is given in Figure 3-5. A counter is similar to an accumulator.

but unlike the add operation on accums, inc returns the value of the counter. Incoif-less is

like inc, except that the increment is done conditionally, depending on whether the current

value of the counter is less than the second argument. Inc.if-less must be part of the counter

interface in order to be linearizable; it cannot be built out of inc and read without another level
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counter = datatype has create, inc, incifless, read. write

create = procedure (1: int) returns (counter)
ensures: returns a new counter set to i

read = procedure (c: counter) returns (int)
ensures: returns the value of c

write = procedure (c: counter, i: int)
ensures: assigns i to c

inc = procedure (c: counter) returns (int)
ensures: increments c by 1 and returns the old value of c

inc-ifiess = procedure (c: counter, i: int) returns (int) signals (notless)
ensures: if c is less than i,

then c is incremented and the old value of c returned,
otherwise c is not changed and notiess is signaled

end counter

Figure 3-5: Specification of counters

of locking around all the operations that will be used concurrently with it.

The observation that an indivisible incif.less cannot be built by simply composing a com-

parison with an increment has unfortunate implications for concurrent object reuse in general.

A data type defines the set of operations that are linearizable, and to extend this set we may

have to implement the entire type again. In sequential programs complex operations are built

out of simpler ones using sequential composition, and while the same can be done in parallel

programs, an operation built from sequential composition is not linearizable. Furthermore.

if we attempt to implement very general linearizable data types that have many operations.

performance will suffer. Returning to the example, the operations on a counter are a proper

superset of the operations on locations, yet we would not want to replace locations by counters

because the counter implementation, as described below, has an extra level of locking.

A counter is represented by a record that contains the integer value of the counter and a

lock. With the exception of read, all counter operations are written using critical regions: they

call acquire, do whatever computation is necessary on the value, and then call release. The

read operation does not require locking, but the write implementation does; it is this locking

that gives the write operation on counters its high overhead.
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The counter implementation allows for concurrent use, but because of the critical regions

in the implementation, there is no real concurrency, except with reads. Fortunately. each

operation is fast, and the critical regions are all a bounded number of instructions. Counters

have more synchronization overhead than accums since, even in the best case, all the mutating

operations on counters require two interlocked instructions compared with only one for accums.

This difference is probably not significant in the context of a larger program that uses such

operations infrequently. Nevertheless, we use accums whenever possible to avoid the extra

interlocked instructions.

Because all interlocked instructions on the Firefly use a single hardware lock, contention for

the interlock lock can be a problem before contention for application-level locks or contention

for the memory bus becomes a problem. In terms of the programming model, this means that

a synchronization primitive such as tfst&5set may be significantly more expensive than the two

memory operations it contains.

3.3.3 Queues

In this section we give a specification and implementation of a queue. The programming

language that is used throughout this chapter and Chapter 4 is a hybrid of existing programming

languages. CLU [LAB+81] and C. From C we take explicit memory allocation, since dynamic

memory allocation is an important feature of our queue implementation. We also take curly

braces for grouping statements, since they save space on a written page. From CLU we take

parameterized data types and a signaling mechanism. Recall from Chapter 2 that signals are

simply alternate termination conditions for an operation. and that a signaling procedure cannot

be resumed.

A specification for a queue is given in Figure 3-6. It includes an interference specification

that says that the print procedure interferes with both enqueue and dequeue. This constrains

the use of queues: executions that involve an invocation of print that is concurrent with enqueue

or dequeue have unspecified behavior. Without the interference specification, print operations

would have to work correctly while concurrent enqueues and dequeues were being done. This

would complicate the implementation of print, but more importantly, would add complications

and overhead to the implementations of enqueue and dequeue.
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queue = datatype [t: type] has create, enqueue, dequeue. is-empty, print

interference between: (enqueue, print), (dequeue, print)

create = procedure () returns (queue)
ensures: returns an empty queue

enqueue = procedure (q: queue, e: t)
ensures: adds e to the head of q

dequeue = procedure (q: queue) returns (t)
ensures: if q is empty then signal empty

otherwise remove and return the tail of q

is-empty = procedure (q: queue) returns (bool)
ensures: returns true if q is empty, false otherwise

print = procedure (q: queue)
ensures prints the elements of q in order

Figure 3-6: Specification of queues

The queue specification is non-waiting. Its implementation, given in Figure 3-7, is lineariz-

able and non-stopping. The non-stopping property, as discussed earlier, implies that the queue

implementation does not deadlock. The figure does not include implementations of is-empty

and print-both are straightforward.

A queue is represented by a contiguous block of locations (called a static-array), plus a

number of pointers into the block. High points to the head of the queue, low points to the tail

of the queue, and defined-high points to the head-most slot that has a valid value. Enqueue

increments high and uses the return value of counter$inc as its unique slot in the static-array.

After the increment, defined-high is less than high, but once the slot has been filled, defined-high

is incremented. Similarly, dequeue ncrements low to get a unique slot from which to read a

value.
2

The static-array is created and expanded using the alloc and realloc operations. The re-

alloc operation copies one block of memory into another after doing an allocation. To avoid

having more than one copy available at any time, the enqueue ensures that reallocs are done

sequentially. The alloc operation, on the other hand, is implemented to allow for concurrency.

'In the procedure headers, the type "cvt" converts between the abstract and representation types. The caller
passes a queue, but the procedure bodies access the object as a rep type.
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queue = cluster [t: type] has create, enqueue. dequeue, print

rep = record [max..alloc. defined-.high: location~int].
low, high: counter,
elts: static..arrayt]]

create = procedure () returns (cvt)
q: rep := afloc(sizeof(rep))
q.max..alloc := 0
q~low := counter$create(0)
q.high := counter$create( -1)
q.defined-.high := -1
q.elts := null
ret urn( q)

end create

enqueue = procedure (q: cvt, e: t)
i .: int:= counter$inc(q.high)
if i < q.max.aloc then

{q.elts[i] := e
while (q.defined-high) < i - 1 do {}% spin
q.defined-.high := q.defined-.high + 1}

else {while q.defined..high < I - 1 do {}% spin
while z >= q.max..alloc do

if I = q.max.alloc then
{if q.max..alloc = 0 then
{ q.elts := alloc(min..queue..size)
q.max-alloc := min..queue..size)

else
{q.elts := realloc(q.elts, (q.max..alloc + 1) *qmult.q.max-.alloc)

q.max-.alloc := q.max.2Jloc * queue-nult}}
q.elts~i] := e
while q.defined-.high < I - 1 do {}% spin
q.defined-.high :=q.defined-high + 1}

end enqueue

dequeue = procedure (q: cvt) returns (t) signals (empty)
h: int := counter$ read (q.high) + 1
max: int := q.max.alloc
if counter$read(q.low) > counter$ read (q.high) then signal empty
i: int := counter$inc-.if Jess(q.low, min(h, max))

except when not-less: signal empty
while q.defined..high < i - 1 do {}% spin
ret urn( q.elts[Z]I)

end dequeue

Figure 3-7: Implementation of queues
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Although the details are not shown in the queue implementation, memory allocation is done by

using separate pools for each thread, so there is potential for real concurrency between multiple

allocations.

Correctness of the queue implementation depends on the following key invariants.

* 0 < low < high + 1
* -1 < high < max.alloc
* -1 < defined-high < high
* size = high - low + 1, where size = 0 =: is.empty

The idea of using an indivisible inc operation (often called fetch-and-add) has appeared

elsewhere [GLR83, HW90]. Our implementation is unique in two respects: space is allocated

dynamically, and access to individual slots in the queue is controlled by a pointer, defined-high.

rather than relying on presence bits or other synchronization of individual locations. We expand

on each of these points below, and then remark on a property of the implementation that is

shared by others in the literature, namely, its dependence on sequentially consistent shared

memory.

The first point is that a queue may grow to hold an unbounded number of elements, because

the enqueue operation dynamically allocates space as needed. Technically, the size is bounded

by the total available memory on the machine, but this is a more generous bound than other

published implementations. The implementation in [GLR83] uses a circular buffer, so there

is a bound on how many elements may be stored in the queue at a given time, while the

implementation in [HW90] is bounded in the total number of enqueues that may be performed.

Dynamic object growth is particularly important in symbolic applications, where the size of

data structures is difficult to predict in advance. Note that our implementation solves only the

easier half of the dynamic object problem, since our implementations do not perform explicit

deallocation.

The second point about our implementation is that it solves the problem of restricting access

to filled slots without using presence bits or locking at the slot level, and instead, the defined.high

pointer controls access. The problem arises, for example, when a queue is empty and both

enqueue and dequeue are invoked concurrently: although enqueue may have been assigned a

slot in the queue, the dequeue operation must wait for the slot to be filled. Herlihy and Wing's

implementation depends on memory being cleared when allocated, because dequeue tests slots
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to determine whether they are full or empty [HW90]. Our implementation runs correctly even

if the allocator returns uncleared memory. We implemented a version that depended on cleared

memory in place of the defined-high pointer, but found no measurable performance difference

between the two implementations. This is in spite of having a memory allocator on the Firefly

that automatically clears memory when allocated, so we were paying the price of initializing

memory but not relying on it. In general, we prefer to avoid reliance on this aspect of the

memory allocator since it incurs a overhead on all allocations.

A number of concurrent queue implementations are also described in [GLR83], each of them

providing a different solution to the the problem of preventing unfilled slots from being read.

All of the solutions involve an explicit flag (or some kind of counter) associated with each slot

to denote whether the slot is empty or full. Thus, an initialization phase is required during

which the buffer's flags or counters are set. In a bounded buffer queue this may be reasonable.

but in a dynamically allocated one it will considerably slow the execution of enqueue operations

whenever new buffer space must be allocated.

A final point about the queue implementation in Figure 3-7 is that it uses a strong notion

of shared memory, since not all shared memory access are protected by critical regions. The

definedhigh pointer, which acts like a counter, is implemented as a simple location without

locking. The process of incrementing defined-high need not be protected by a lock because

each thread executing an enqueue waits for the value of defined-high to be one less than i, and

then performs the increment. The index i is unique, since it was generated by the counterSinc

operation on high, so the sequential consistency of memory guarantees that two increments will

never be performed concurrently.

Each enqucue operation waits for all previous slots to be filled before returning, and thus

our implementation is not wait-free, unlike the implementations that rely on presence bits or

locks [HW90] and [GLR83]. In our implementation, if processors run at different rates, threads

running on fast processors will be slowed to the pace of slower ones when accessing the queue.

Page faults or remote memory accesses can, in effect, cause one processor to run slower than

another, while wait-free implementations will continue to make progress in spite of these differ-

ences in execution speed. We give up the advantages of a wait-free implementation in return

for fewer synchronization operations in one case [GLR83], and a less sophisticated (and poten-
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dyn-array = datatype [t: type] has create, addh, fetch, size. print

interference between: (addh. print)

create = procedure (),returns (dyn.array)
ensures: returns an empty array

addh = procedure (a: dyn-array, e: t)
ensures: adds e to the top of a

fetch = procedure (a: dyn.array, i: int) returns (t)
requires: 0 < i < size(a)
ensures: return the ith element of a

store = procedure (a: dyn.array, i: int, e: t)
requires: 0 < i < size(a)
ensures: replace ith element of a by e

size = procedure (a: dyn.array) returns (int)
ensures: returns the size of a

print = procedure (a: dyn.array)
ensures prints the elements of a in order

Figure 3-8: Specification of dynamic arrays (dyn.arrays).

tially more efficient) memory allocator in another case [HW90. While the notion of a wait-free

implementation is semantically quite powerful, the practical importance has not been proved.

Wait-free implementations depend on synchronization primitives that are themselves wait-free.

yet these do not exist on current architectures. For example, a wait-free implementation of

fftch-and, add must allow for processors that crash while executing the fetch-and-add.

3.3.4 Arrays

A slight variation on the queue abstraction is an array that grows dynamically. The implemen-

tation of a dyn.array is a straightforward modification of the queue implementation, so we do

not include it here. (The main difference is that the low pointer is not needed.) However, it is

instructive to look at the specification of a dyn-array, which is shown in Figure 3-8.

The main difference between the queue and the dyn-array is that the dyn.array has fetch

and store operations, but no operation for removing elements. Both fetch and store require

that the index i is between 0 and size(a) - I to ensure that there is an element at i. The
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precondition (requires) on a is unusual, since as noted ealier, it is difficult for the caller ensure

a precondition on a shared mutable object. In this case the condition can be guaranteed by

comparing the index against the size of the array before calling fetch or store. Because the size

is nondecreasing, a precondition that holds at some instant in time will also hold in the future.

Although they are not shown in the figure, safe versions of fetch and store that check whether

i is in bounds are also implemented. In that case the monotonicity of an array's size is still

being used. but only within the implementation. The cost of the safe operations is an extra

comparison, which may be unnecessary if other information about the program execution can

be used ensure the requires clause.

In general, objects that can only be mutated monotonically in a predictable direction are

easier to use and reason about than objects tha" have arbitrary mutation patterns. A more

familiar parallel programming technique that relies on a trivial kind of monotonicity is the use

of objects that are initially undefined, but once they become defined they are never mutated

[ANPS7]. An even more degenerate case of monotonicity is an immutable object.

3.3.5 Mappings

A mapping type stores a set of domain/range pairs for arbitrary types of domain and range

elements. There are interesting features of our mapping type in both its specification and

its implementation. The implementation is discussed in detail below, but in discussing the

specification we need to make one observation about the implementation: the representation

of a mapping contains thread-specific data for each thread that uses the mapping. The use of

thread-specific data has important implications for the specification; it changes the nature of

the abstraction, since each thread must have its own version of the object. We refer to such

objects as multi-ported objects and to each thread's version as a port. Implementations of this

kind are prevalent in implementations of shared and distributed objects but we know of no

other work that describes the specifications of the procedures that access these object. (See

[E1185, Her90, CD90, WW90] for some examples of objects that contain thread-specific data.)

The specification of a multi-ported object typically has an interference specification that

depends on the port being used, which is important because it means that a multi-ported

object looks different than a normal object, even at the abstract level. Consider the mapping

62



mapping = datatype [domaintype, rangetype: type] has
create. add-port. assign.print

interference between: (print, assign), (add-port, assign).
(add-port. add-port)

interference on ports between: (assign. assign)

create = procedure () returns (mapping)
ensures: returns a new identify mapping

add-port = procedure (m: mapping) returns (mapping)
ensures: returns a unique port to n

assign = procedure (m: mapping, d: domaintype, r: rangetype)
signals (bound(rangetype))

ensures: if d is bound to some r' in m
then signals bound(r')
otherwise the binding d := r is added to m

print = procedure (m: mapping)
ensures: prints m

Figure 3-9: Specification of mappings

specification in Figure 3-9. All ports of a given mapping object access the same abstract

value in that an assign to one port is observed by all others, but the interference specification

distinguishes between different ports. since assigns interfere on the same port. Interference

relations in previous examples were denoted by relations on procedure names, but a more

expressive linguistic mechanism is needed for multi-ported objects. The intended meaning of

the interference specification on assigns in Figure 3-9 is to permit executions in which there

are concurrent assigns, but only when they are invoked on different ports. In practice. each

thread using a particular multi-ported object is given its own port, so the sequential nature of

threads will automatically ensure that the interference specification is observed. If there were

a large number of threads accessing the object with low frequency, we could also establish a

convention whereby the threads are partitioned by ports, and threads on the same port must

go through a shared lock. In either case, there is more potential concurrency than if we had

implemented the assign operation with a critical region protected by a single lock.

In addition to the interference specification on assign operations of the same port. there

are also interferences of the kind we have discussed in other examples. Interference is specified
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between print and assign. add-port and assign, and between add-port and add-port. These

operations interfere regardless of the port being used.

An implementation of mapping is given in Figures 3-10 and 3-11. Code for the print proce-

dure is omitted. since the interference specification on print and assign make a straightforward

implementation possible. The representation of mapping type is given in Figure 3-10: each

thread has its own record object, but they share all state except the myself index. The record

contains an announcement board, which is an array of possibly null domain elements. There is

one entry in the announcement board for each port, meaning one entry for every possible con-

current assign invocation; the myself index give the port's location for posting announcements.

In addition to the announcement board and associated index, the representation contains

a dynamic array of bindings. Bindings that are stored in elts are part of the current mapping,

while domain elements in announce are values that a thread is trying to bind, but for which

the binding may not succeed.

The assign procedure is the most interesting algorithmically, and also the most important

to the performance of the matching application in which mappings are used. The difficulty

is in handling duplicate assignments correctly without forcing assignments to distinct domain

elements to wait for one another. Two assignments are duplicates if they involve the same

domain element, and two different instances of the internal assign-help procedure collide if

their assignments are duplicates and they are concurrent. The assign procedure uses a backoff

strategy to prevent duplicate assignments from being stored; the procedure repeatedly attempts

the assignment by invoking assign-help and waiting between attempts. An assign-help operation

has one of the following three behaviors:

" If assign-help collides with another assign-help operation, at least one of them signals

collision.

" If the new binding is not a duplicate with anything in elts, assign-help adds the binding

to elts and then returns.

" If the new binding is a duplicate with something in elts, then assign-help signals duplicate,

passing the pre-existing range value back to the caller as part of the signal.

Assign-help is guaranteed to only add an assignment if the domain value hasn't already been
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mapping = cluster [domaintype, rangetype: type] has
create, add.-port, assign, print

rep = record[myself: int,
announcements: array [domaintype],
elts: dyn..array [binding]

binding = record[domain: domaintype,
range: rangetype]

create = procedure () returns (mapping)
m: rep :=alloc(sizeof(rep))
m.myself :=0
m.announcements := array $addh (array$ newo, null)
m.elts := dyn..array[binding] $create()
return(m)

end create

add-.port = procedure (ml: cvt) returns (mapping)
m2: rep := alloc(sizeof(rep))
m2.myself := array$size(ml.announcements) % get unique id for myself
m 2.announ cements := ml.announcements % share announcements
m2.elts := ml.elts % share elts
array $ad dh(m 2.an noun cements, null) % add place for my announcements
return(m2)

end add-.port

Figure 3-10: Implementation of mappings-representation and creation
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assigned, and isn't being assigned concurrently. If two invocations of assign-help collide. it

is possible that one will succeed in making the assignment, or that neither will succeed, and

instead, both will signal collision. In the latter case. both instances of assign that invoked

assign-help will try again later. The delay between assign-help invocations increases with each

failed attempt, and the delay is a function of the port, so the likelihood of collision decreases

with each attempt.

Technically, the assign procedure is does not meet the non-stopping condition of Chapter 2.

but given a reasonable model of the multiprocessor and its scheduler, an argument can be made

that the probability of assign running forever approaches zero. In practice, we never observed

an execution in which an assignment ran forever, even when assigns were done with artificially

heavy loads. We experimented with a number of backoff schemes (denoted by the function f in

Figure 3-11) for the delay, including linear, exponential. quadratic, and random, before settling

on a quadratic scheme.

This implementation was chosen after experimenting with a much simpler algorithm that

uses a single critical region for all assigns. Although in isolation the latency of a single assign

operation is lower in the simpler scheme, the throughput is must worse. In the simple scheme

each assign operation executes serially, even when the domain element was previously assigned

so that no mutation is needed. In the more complicated implementation with backoff. non-

mutating assigns can execute concurrently, with concurrency bounded by the number of ports.

Even when two concurrent invocations must both mutate the mapping, if their two domain

values are distinct, then the only time they must be serialized is during the addh operation.

which we know from earlier discussion is a few instructions. The performance advantage, f the

more complicated strategy is noticeable not only under artificial loads, but also in the context

of the matching application.

Another implementation that we considered but did not implement was to use a hash table

and to lock at the level of buckets. This would probably be a reasonable choice, given the

experiments that were performed with the matching program in Chapter 4. One reason we

did not choose a hash table is that matching is not a stand-alone application, but occurs as

a frequent operation in term rewriting and other symbolic applications. The mappings that

occur in practice are quite small, while the key space is potentially large, and the number of
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instances of substitutions is large, so the space requirements of a hash table might be excessive.

In addition. assuming an imperfect hash function, two assignments on different domain elements

may be serialized by the lock on buckets, and all bindings that are stored in that bucket will

be compared while holding the lock. In contrast, our implementation only serializes during the

addh operation or when two identical domain values are being assigned. An interesting future

project would be to analyze the performance of the hash table implementation carefully, using

the characteristics of real applications.

While these are interesting properties of the mapping implementation, we believe that the

mapping type is most important to demonstrate the idea of multi-ported objects. In this case.

the multi-ported nature is used to reduce the contention that occurs in the simpler implementa-

tion. Although we avoided the details of memory allocation in the code for queues. dyn-arrays.

and mappings, a multi-ported memory pool is used to reduce contention there as well.

Multi-ported objects would also be useful as the abstract view of a distributed object. Dis-

tributed objects spread the implementation across nodes of a distributed system or distributed

memory multiprocessor, using combinations of replication and data partitioning to make the

distributed objects behave as if it were a single shared object. The most common example of

a distfibuted object is a memory cell in a multiprocessor with caches, but many others have

been designed and implemented for both distributed systems [E185, BT88, BHJ+87] and for

multiprocessors [Luc87b. Da186, CD90]. To access a distributed object, these systems provide

sophisticated run-time support so that each object is given a single name: the run-time system

must determine what node in the distributed object should be used for a particular operation.

This determination can be done using various heuristics to avoid overloading nodes and to

achieve high locality. Instead of requiring the overhead of such run-time support. multi-ported

objects suggest a much simpler system, and slightly more complicated programming model, in

which each thread has information about where to locate its node (i.e., port) of the distributed

implementation. Thus, multi-ported objects may be useful for improving locality on distributed

memory machines, just as they reduce contention on shared memory machines.
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assign = procedure (in: mapping, d: domaintype, r: rangetype)
signals (bound( rangetype))

backoff: mnt :=m.myself
while true

{ for (1 0) to (array -con current $size( m.elt s) - 1)
{b: binding m.elts[i]
if b.domain =d then signal bound(b.range)}

assign..help(m, d, r)
except when duplicate(r2): signal bound(r2)
except when collision:

f{walt(backoff) % pause for backoff clock ticks
backoff := f(backoff)
continue}

return)
end assign

assign-help(m: mapping, d: domaintype, r: rangetype)
signals (collision, duplicate(rangetype))

{m.announce~m.myself] := d
for (I := 0) to (arrav~size(m.announce) - 1)

{ if I = m.myself then continue % skip own announcement
d2: domaintype := m.announcei]
if d2 = null then continue
if d = d2 then % found collision

{ m.announce[m.myself] := null signal collision))
for (I := 0) to (array -con current $size (m.elts) - 1)

{b: binding := m.elts[i]
if (b.domain = d) then % found stored duplicate

{ m.announce[m.myself] := null
signal duplicate(b.range)}}

arrav-xoncurrent$addh( m.elts, binding$[domain: d, range: ri)
m.an nounce[m. myself] := null
return
end assign-help

Figure 3-11: Implementation of mappings-the assign procedure
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Chapter 4

Designing Parallel Programs

In the previous two chapters we considered the question of what basic building blocks should

be used for parallel programming, and chose the notion of linearizable concurrent objects. In

this chapter we consider the problem of parallel program synthesis, or how to design programs

that have the modularity provided by concurrent objects, but without sacrificing performance.

Several other approaches to parallel programming have been proposed, and each one appears to

be suited to some restricted domain of applications. Outside their intended domain, programs

produced using these approaches tend to be either inefficient or overly complex. Our approach

is no exception; it is designed programs with irregular patterns of control and communication.

and in particular, for symbolic programs.

As discussed in Chapter 1, the trade-off between program simplicity and program perfor-

mance is even more significant for parallel programs than for sequential ones. One way of

comparing various programming approaches is to consider how that trade-off is resolved. Our

approach is rather liberal in terms of programmer freedom, because it is based on a model

of asynchronous. explicit parallelism in an imperative programming language. Thus, in com-

parison to approaches based on safer, more restricted programming models, such as a purely

functional language or a strict data parallel model, we have given up a certain amount of

simplicity in the belief that better performance can be achieved.

We address the problem of program simplicity, which is partially a concern about correct-

ness, by breaking the design process into distinct stages. Each stage has a clearly defined set of

requirements to be met, and the argument that a particular design meets these requirements
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can be made either formally or informally. The resulting programs have a stylized module

structure that makes them easier to modify, debug, and maintain.

In Section 4.1 we describe a class of programs that is well-suited to our approach. In

Section 4.2 we present an overview of the transition-based approach, and in Section 4.3 we

apply it to a substantial example. A discussion of the approach follows in Section 4.4.

4.1 Program Characteristics

Roughly speaking, parallelism can be divided into process parallelism, which involves executing

different processes in parallel, or data parallelism, which involves executing identical processes

on different data in parallel. Process parallelism has limited scalability, since different code must

be written to implement each process: a safe conclusion is that programs involving thousand-fold

parallelism will not be implemented solely with process parallelism. It is a mistake, however.

to conclude that process parallelism is uninteresting. In many applications the parallelism with

the coarsest granularity, and thus the lowest relative overhead, is process parallelism.

Process parallelism includes the software pipelining paradigm, wherein the computation is

divided into a fixed set of stages, the processes at the stages execute in parallel, and data

is passed from one stage to the next to be processed. Consider, for example, a sequential

program of the form P1; P2;P 3, where each of the Pi is a procedure invocation. In addition.

assume that each of the P,'s involves a startup phase, during which data is being dispersed

to processors, and an expiration phase, during which some processors are waiting for others

to finish. The parallelism profiles for the Pi's have tails of poor processor utilization at both

ends of the computations. If we paralelize the program by parallelizing each Pi, but leave the

sequential structure at the highest level, then the parallelism profile of the program will be the

concatenation of the P, profiles, and any periods of low processor utilization will be inherited

from the Pi's. If, instead, parallelism is added to the program level by overlapping the Pi's, then

the periods of low utilization in one P may be masked, effectively smoothing the program's

parallelism profile.

For applications involving irregular computations, the impact of poor processor utilization

is higher than with regular computations. The reason is that irregularities make the scheduling

problem more difficult, and therefore lead to periods of low processor utilization. The large
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data structures in numerical programs are usually arrays of numbers. for which the cost of

operations can be predicated in advance. When the cost of an operation is independent of

its input, or at least bounded for any input, a static scheduling strategy may be effective. In

contrast. the large data structures in symbolic programs are often trees or graphs. and since

the size and layout of these structures is not known at compile time, scheduling must either

be done dynamically or badly. Data parallelism is therefore easier to schedule in numerical

programs, where the size of the input is constant for each element in an array and grain size

can be adjusted uniformly by working on fixed-size sub-arrays. There is a second phenomenon

that occurs in symbolic problems. in that performance varies significantly even for inputs of the

same size. Consider the problem of checking for tree isomorphism; if the trees differ at the top.

then the operation will be fast, even for large trees. This kind of performance instability occurs

in most search problems and problems for which some inputs result in abnormal termination:

while such problems are typical of symbolic computations, they arise in some numerical ones

as well.

Our approach, introduced in Section 4.2, incorporates both data and process parallelism

within a single uniform framework. and is intended for development of coarse grained parallel

programs. One of the challenges was to make effective use of processor resources, even when

programs involve heterogeneous data structures and operations that exhibit performance insta-

bility. The approach is not intended for applications having easy data parallel implementations.

where the bulk of the computation is a set of independent and uniformly expensive operations.

Although there is nothing preventing its use on such problems, little or no benefit will be

derived from the generality of the approach. We believe that programs such as compilers, the-

orem provers, algebraic manipulation systems, circuit simulators, and expert systems may all

be amenable to our approach.

We make one simplifying assumption about our application domain: the programs are not

reactive. The programs run in a batch style, and do not accept input from the environment

or from a user after the initial input values. This will simplify both the presentation and the

performance analysis of resulting programs, but as discussed in Section 4.4, the restriction is

not fundamental to our approach.
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4.2 A Transition-Based Approach

In this section we present an overview of our approach to developing parallel programs. The

presentation is informal and only intended to give the reader the intuition behind the approach.

A more thorough description is given through an example in Section 4.3. A larger example is

given in Chapter 5.

In the previous section we identified the problem of producing programs that exhibit coarse

grained parallelism and make effective use of available processor resources. The purpose of

transition-based development is two-fold: to reveal coarse grained parallelism to the program

designer, and to provide a framework for clean, modular implementations.

A common approach to parallel program design is to take a sequential program and add par-

allelism and synchronization such that the parallel program is, in an abstract sense, equivalent

to the sequential one. (Note that parallel algorithms, in contrast to parallel programs, are often

designed from scratch.) The result of this development technique is that a parallel program

tends to retain a sequential structure at the highest level, in effect inheriting synchronization

points from the sequential implementation. Since sequential programming languages require

that programmers order all operations, even when the order is arbitrary, these synchronization

points may unnecessarily limit parallel program performance.

In our approach the parallel program designer also starts from a sequential program and

adds parallelism and synchronization, while preserving an equivalence to the original. The

difference is that we start with a highly nondeterministic, abstract description of a sequential

program, without the arbitrary orderings of a conventional sequential program. These abstract

programs are called transition axiom specifications, and our approach is called the transition-

based approach. The four basic steps in the approach are outlined here:

1. Give a transition-axiom specification for the problem.

2. Refine the specification.

3. For each transition axiom in step 2, implement a procedure that effects the specified state

change.

4. Implement a scheduler to execute the procedures in step 3.
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A transition-axiom specification describes the set of possible state transitions that will be

observed in any execution. It is an abstraction of a program, rather than a specification of a

problem. For example, a specification of a program that sorts an array, A. might state that any

pair of elements, (A[i], A[j]), can be swapped if i < j and A[i] > A[j]. Transitions are specified

using transition azioms, which are guarded commands [Dij76]. In our use the commands are

flat, that is, there is no nesting of guards. For example, a specification of the sorting program

contains a single axiom, written (i < j)&(A[i] > A[j]) - (A[i] := A[j])&(A[j] := A[i]). A

transition-axiom specification also constrains executions with liveness properties, which cannot

be expressed as transition axioms. A liveness property requires that certain transitions eventu-

ally happen. For example, in any execution of the sorting program, a pair of elements cannot

remain forever out of order: eventually, either they must be swapped with each other, or one

of them must be swapped with another element. The specification in step 1 is a description of

the high-level actions in an execution, and the difficulty of writing this specification should be

less than that of writing a traditional sequential program to solve the same problem.

Transition axioms specifications are used commonly to describe systems with concurrency,

e.g., [Lam89, Lam90, LF81, LT87, CM88]. Our transition axiom specifications do not differ

significantly from any of these. However, we allow a general class of liveness properties as in

Lamport's language [Lam90], rather than the fixed notion of weak fairness in Unity [CMSS]

and the I/O Automata model [LT87]. Moreover, our specifications require a richer semantic

model than provided by the formal languages of [CM88] and [Lam90], because, for example.

we allow sharing among objects in the state [GL90]. The emphasis in most of these methods

is on reasoning, rather than development, and on algorithms, rather than large programs.

Our emphasis is on development of large programs, with concerns for both modularity and

efficiency.
1

In step 2, the transition-axiom specification is refined, possibly a number of times, with the

goal of finding a specification that can has a clean and efficient direct implementation. The

goals of refinement are: simple guards, an appropriate granularity of transition axioms, and a

weak liveness property. We postpone making these goals precise or giving examples until after

1Chandy and Misra address performance concerns in Unity [CM88]; the differences between their approach
and ours. with regard to performance, appear in the later steps of our approach.
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presenting steps 3 and 4, since the goals of specification refinement are tied to the question

of what it means for a program to implement a specification. Given the relationship between

specification and implementation, we show that some transition-axiom specifications lead to

implementations with either poor performance or ugly abstractions. It is such specifications

that the designer tries to avoid in step 2; when intuition fails, it may be necessary to repeat

step 2 if the program written in steps 3 and 4 is unsatisfactory.

In a general sense, the purpose of refinement in step 2 of our approach is the same as

the purpose of refinement in Unity program development: in both cases the goal is to find

a specification that is closer to a real implementation, and in both cases the designer uses

an understanding of the process by which specifications are translated to implementations

in determining how a specification should be refined. There are two significant differences

between the approaches. The first difference is that with Unity, the translation process targets

a particular machine architecture. while in our approach, the translation targets an abstract

state machine that is implemented by a programmer. Thus, refinement in our method stops at a

higher level of abstraction; it stops as soon as the programmer is confident that an abstract state

machine with the necessary operations can be efficiently implemented. The second difference

is that in Unity, translations are viewed as automatic; the intent, which has not yet been

realized, is for Unity compilers to produce executable multiprocessor programs from Unity

programs. Thus, the translation process in Unity is necessarily conservative; it must be correct

for any Unity program, and it must be decidable. In our approach. the translation between

a specification and implementation is constrained only by the correctness conditions on the

implementation, and by the programmer's ingenuity, since the programmer does the translation

process by hand.

Between step 2 and step 3, we depart from specifications and move on to programs. Al-

though the specifications describe executions, they are not executable. The transition axioms

define what states may follow others, but for programs more complicated than a sorting pro-

cedure, there may be non-trivial computation in getting from one state to the next that is not

described in the specification. Furthermore, the liveness properties describe properties of infi-

nite executions, not procedures for ensuring those properties. It is popular in the literature to

refer to lower-level specifications as implementations of higher-level ones [Lam89, CM88, LT891.
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but we reserve the word implementation for programs written in a language that runs on a real

machine.

In step 3, a set of procedures called transition procedures are implemented. The procedures

are themselves sequential, but are run concurrently with one another. There is one procedure

for each transition axiom. If the guard is true, the state is changed to match the given state

transition, and if the guard is false, the state remains unchanged, and an exception is signaled.

For the swap axiom, the corresponding procedure would take the array and two indices as input.

compare the array elements at those indices, and swap them if they are out of order. Since

two concurrent instances of this procedure could interfere with one another, some synchroni-

zation would be needed. In addition to the set of transition procedures, there is a termination

procedure that returns true if all the guards are false, and returns false if any one of them is

true.

The scheduler implemented in step 4 is a multi-threaded program that invokes instances of

the transition procedures. Thus, the programming model involves a single parallel module (the

scheduler) invoking operations (the transition procedures) on a concurrent object (the program

state). Application-specific scheduling has been demonstrated to result in better performance

than when systems schedulers are used directly lAndg9], and in particular, the worker model of

application scheduling has been used successfully in a number of parallel applications [MNSS7.

CG89. RVS9. JW90]. The worker model is an example of a user-level scheduling paradigm: it's

definitive characteristic is that the tasks being scheduled are short-lived, so each is allowed run

until it either blocks or finishes. Thus. the worker model avoids the complication and overhead

of time-slicing schedulers. We take the simplicity of the worker model one step further by

requiring that transition procedures are non-waiting, thereby eliminating the need for blocking.

A key feature of our approach is that a weak correctness requirement is placed on the

scheduler, so that there is a great deal of freedom in the choice of a scheduler. This allows for

significant performance tuning of the scheduler, which occurs late in the design process. Our

schedulers are implemented so that any transition procedure with a true guard will eventually

be executed, and if there are no transition procedures with true guards, then all scheduler

threads will eventually halt. No other constraints are placed on the scheduler: it may invoke any

transition procedures concurrently without causing race conditions or deadlock. Each scheduler
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thread interleaves transition procedure invocations with the termination procedure, and halts

when termination returns true. A naive scheduler for a sorting program might repeatedly cycle

through all pairs of indices, calling a swap procedure for each pair, until all invocations fail.

A more efficient scheduler would keep a history of unsuccessful swaps, so that it could avoid

retrying pairs of indices that failed in the past and have not been affected by other swaps since

that time.

4.3 Design of a Term Matching Program

To make this discussion concrete, we demonstrate the transition-based approach on a program

for term matching. The matching program is useful for pedagogical reasons: it is a simple

problem, but characteristic of symbolic programs, and the implementation is large enough

that modularity issues can be illustrated. While the parallel implementation achieves good

performance for very large inputs, there is no advantage to parallelism for inputs of a more

realistic size. Each of Sections 4.3.1-4.3.4 describes one of the four steps in the program's

development. In general, there are non-trivial arguments to be made for the correctness of each

step in the approach; Section 4.3,5 illustrates some of these. First, though, we briefly introduce

the matching problem.

Matching procedures take terms as inputs and produce substitutions as output. Terms are

built from a fixed set of variables, V, and function symbols, F, where each function symbol

has an associated arity. A term is either a variable, or it has the form f(tj,...,t,), where f is a

function symbol of arity n (written arity(f) = n), and each of the t, is itself a term. Function

symbols having arity zero are constants, and are written as terms without parentheses. It is

convenient to think of terms as trees, and for a given term t we refer to the function symbol at

the root as the head, and subtrees immediately below the root as the child subterms. Given a

term t the it h child subterm is denoted t[i], the head symbol is denoted t.head, and when t.head

is a function symbol, arity(t.head) is simply written arity(t). A term that contains no variables

is said to be ground. Throughout this chapter, x represents a variable, a and b are constants,

and p and t are terms; all may appear with subscripts. We use the predicates is.var(t) and

is-ground(t) with the obvious meanings.

A substitution is a mapping from variables to terms, denoted by a set of variable/term
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pairs. For example, {x 1/tj,...,x,,/t,}j is the substitution that maps each xi to t,, and all

other variables to themselves. Substitutions are extended to a mapping from terms to terms

as follows. For a substitution, a, the application of a to t is written a(t) and by definition.

a(f(tj,..., t,,)) = f(a(t1 ),..., a(t,)). The domain of a substitution a is the set of variables that

are changed by a, {v I a(v) 4 v}. The composition of substitutions si and S2, denoted S1 0 S2 .

is defined by the equation (sI 0 s 2 )(t) = s 2 (sl(t)).

The matching problem is to take a term, p, called the pattern, and a ground term t. called

the target. and determine whether there exists a substitution a such that a(p) = t. In most

applications, the value of the matching substitution is needed. Therefore, a matching procedure

is specified to take a pattern and target as input, and either produce a matching substitution.

or raise the exception no-match. We constrain the matching substitution so that its domain is

a subset of the variables in the pattern, thereby making the matching substitution unique.

For example, given a pattern f(g(a,x),x), and a target f(g(a,b),b), where x is a variable

and a and b are constants, the matching substitution is {x/b}. Using the same pattern, but

a target term f(f(a,b),b), there is no match because of a clash between the inner f and g.

If, instead, the target term is f(g(a,b),a), there is again no match; in this case the failure is

caused by the inconsistency of having x mapped to both a and b.

4.3.1 A Transition-Axiom Specification for Matching

In this section we apply the first step in the transition-based approach by giving a transition-

axiom specification of a matching procedure. A matching procedure, whether sequential or

parallel, performs the same basic actions. Consider the sequential matching procedure shown

in Figure 4-1. Rather than returning a substitution, match is called with the empty substitution

and modifies it to be the matching substitution, when one exists.

There are three actions performed in match: function symbols in p and t are compared

(line 7); variables in p are bound to a subterm of t and added to s (line 3); and for any variables

that occur more than once, their corresponding subterms are checked for equality (line 5). The

ground.equal procedure checks two ground terms for equality and is included as part of the

problem to be parallelized. Ground-equal has the action of comparing function symbols in the

two inputs (line 12).
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match = procedure (p, t : terms : substitution) signals (no-match) 1
if isvar(p) 2

then assign(s,p, t) 3
except when already -bound(t2): 4

if ground-equal(t.t2) then return 5
else signal no-match 6

if (head(p) - head(t)) then signal (no.match) 7
for (i := 1) to arity(p) 8

match(p[i], t[i], s) resignal no-match 9
end match 10

ground-equal = procedure (tl,t2 : term) returns (bool) 11
if (head(p) # head(t)) then return(false) 12
for (i := 1) to arity(p) 13

if -'ground-equal(p[i], t[i]) then return(false) 14
ret urn(true) 15

end ground-equal 16

Figure 4-1: A Sequential matching procedure

The call to assign in match demonstrates the use of signals. For convenience, we have

included the interface specification for assign, which was presented in Chapter 3, in Figure 4-2.

When the already-bound signal is raised by assign, it returns a value of type term. The clause

in match that begins "except when already bound(t2)" catches the already-bound signal, assigns

the signaled term value to the local variable t2, and passes control to the statements nested

within the clause. The resignal statement in line 9 is shorthand for catching and then signaling

the no-match signal.

assign = procedure (s : substitution. vt : term) signals (already.bound(term))
requires: is.var(v) & is.ground(t)
ensures: if v E domain(s)

then signals already.bound(s(v))
else s := (s o {v/t})

Figure 4-2: Interface of assign procedure for substitutions

The need to do assignment in matching makes a parallel solution non-trivial; a pattern that

contains multiple instances of the same variable may result in simultaneous assignments to that

variable.
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In writing a transition-axiom specification for the matching problem, we can use tbe same

actions as in the sequential match procedure. A transition-axiom specification contains a list of

state components (typed object names), a predicate giving initial values for the objects, a set

of flat guarded commands, and a liveness property. Figure 4-3 gives an example specification

for matching, in which the problem is viewed as a transformation on a container of equations

[CL88], and each transformation is one of the actions from the sequential code. (The symbol -

is used as part of an equation literal, to avoid confusion with expressions that contain equality

tests.) The container starts with the single equation to be solved, and when a match exists. it

ends with a representation of the matching substitution. A matching substitution is represented

by a container in solved form: a container in which all equations have a variable on the left-hand

side and a ground term on the right-hand side, and no variable occurs more than oace.

We give E the type container, rather than queue, stack, set, or bag, for example. because

containers are less constraining. Containers were qpecified in Chapter 2 (Figure 2-1): they

have an insert operation and a choose operation. Unlike queues or stacks, the order in which

elements are removed from a container is not constrained by its 3pecification; by leaving this

order unconstrained, we are postponing scheduling decisions. Unlike sets or bags, containers

do not treat duplicate elements specially; by treating all equation objects as distinct elements.

we are postponing the decision of whether special treatment should be given to duplicates, and

if so. what the right notion of duplicate is. (In particular, two equations may be distinct even

though they represent the same pair of terms.)

The first three parts of a transition-axiom specification (everything except the liveness

property) define a nondeterministic state machine. A state is a well-typed assignment of values

to the state components, and an execution of a state machine is a possibly infinite sequence of

states. In Figure 4-3 the machine has a single state component, E, that can take on values of

type container[equation] or a special value no.match.

The initial condition constrains the possible initial states of a machine. In Figure 4-3. the

machine starts with E holding the single equation (pattern - target), which is the user's input

pattern and target.

The transition axioms define the legal steps, or actions, of a machine. They are written as

guarded commands, G => S, where G is the guard and S is the statement part of the command.
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State Components
E : container[equation] + no-match

Initially
E = (pattern - target)

Transition Axioms

decomposition
(p t) E E='

if (-is-var(p) & (p.head = t.head))
then (E :=E + (p[1] - t[1]) + .. + (p[n] -tin]) - (p -t))

clash
(p - t) E E =>

if (-,is.var~p) & (p.head # t.head))
then (E no-match)

consistency
(pi - ti) E E & (p2 t2) E E & -,sameobj((pi t 1 ),(p 2 - t 2 )) =

if (is.var(pl) & is.var(p2 ) & (p, = P2))
then (if groundequal(t,t 2 )

then E := E - (p, - t1 )
else E := no-match)

Liveness

Executions eventually terminate with E in solved form or equal to r :)match

Figure 4-3: Transition-axiom specification for matching.

Semantically, an action is a pair of -tates, pre and post. An action is an instance of an axiom.

G z . S, if G is true in the pre state, and the post state can be derived from the pre state

by "executing" S. An axiom is said to be enabled in a particular state if its guard is true in

that state. Given a specification, an action is legal if it is an instance of some axiom, and an

execution is legal if it starts with an initial state, and each consecutive pair of states is a legal

action. Thus, state machines execute nondeterministically-at any point in an execution. any

legal action may be taken. For convenience we give names to transition axioms, and refer to an

instance of an axiom named A as an A action.

Consider the transition axioms in Figure 4-3. The decomposition and clash axioms are

enabled if E is non-empty, and tle consistency axiom is enabled if E contains at least two

equations. The same.obj predicate in the guard of the consistency axiom is true only if the
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two named equations refer to the same object. Two equations with the same syntactic terms

are not necessarily the same object. If E is equal to no-match. we treat this as an empty set.

so all of the guards are false.

If there is an equation in E for which the right and left-hand sides have the same head.

then a decomposition action replaces the equation with the equations made up of the pairs of

child subterms. A clash action detects function symbols that are not equal, and records this by

changing the value of E to no-match. A consistency action is used to make E a well-defined

substitution. If there is more than one equation involving some variable x, then the two terms

made up of the right-hand sides of the equations are tested for equality. If they are equal. the

two equations are redundant, so one of them is deleted; if they are not equal, an inconsistency

has been discovered, so E is set to no-match. The statement parts of all three axioms contain

conditionals without else clauses; when the given condition is false, the post state is equal to

the pre state. Thus, in addition to the actions just described, all three axioms have stuttering

actions as instances, where a stuttering action is one in which the pre and post states are equal

[AL88].

Transition axioms, and the state machines they define, are useful as specifications, but

they cannot express every interesting property of programs. Transition axioms define safety

properties, which make a statement about what bad things cannot happen in an execution, e.g..

what states cannot be reached. They cannot express properties such as termination or fairness.

which are examples of liveness properties. A liveness property makes a statement about what

good things must eventually happen in an execution. Given a (correct) specification, no legal

execution will compute an incorrect answer, and any partial legal execution can be extended

to one that computes the correct answer. To extend this partial correctness condition to total

correctness, the liveness property must be taken into account. A legal execution for which the

liveness property holds is said to be live.

The liveness property in Figure 4-3 restricts executions to those that terminate with E

representing a solution. This property is the conjunction of two separate liveness properties:

executions must be finite, and executions must have a state in which E is either in solved form

or eqial to no-match. The set of executions that are legal but not live contains executions

that have an infinite sequence of stuttering actions, and those that end before E represents a
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solution.

In general, it may not be obvious that a given transition-axiom specification specifies the

desired program (is correct), or that it specifies any program at all (is consistent). The key to

a partial correctness argument for specification 4-3 is the following invariant: considering E as

a system of equations to be solved, the solution to the system of equations is the same in every

state. Given partial correctness, total correctness is obvious, since termination is explicitly

stated in the liveness property. A consistency argument for a specification involves showing

that the set of live executions is nonempty. A consistency argument for specification 4-3 relies

on the existence of a solved form representation for any matching substitution, and there being

a sequence of actions by which the matching substitution or no-match can be computed.

4.3.2 Refining the Matching Specification

The purpose of the specification in step 1 is to capture the basic actions of the program, based

on the program designer's intuition. In step 2, the purpose is to find a specification that retains

those basic actions, but that more directly describes the structure of a proposed implementation.

Recall from the overview of our approach that we require a one-to-one mapping between

the transition axioms in the specification of step 2 and the transition procedures of step 3. In

Section 4.3.4 we define the notion of direct implementation that makes the mapping from speci-

fication to implementation more precise. This direct relationship between syntactic components

of a specification and modules of an implementation is unique to our approach, and will give

our programs a kind of modularity that would not otherwise exist. It will also raise some issues

of implementability that do not arise when a more general relationship between specification

and implementation is allowed.

Certain qualities of a specification will make it easier to find an efficient direct implementa-

tion: a weak liveness property, simple transition axioms, and an appropriate grain size for the

target machine.

1. A weak liveness property allows for flexibility in scheduling, making it possible to do

performance tuning of the scheduler late in the program development process. In matching

we use a notion of universal weak fairness, which requires only that a state machine

continue taking steps as long as it has legal steps to take. Lamport describes this notion
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(without naming it) as "the weakest liveness property that appears in practice" [Lam9o.

2. Simple transition axioms allow for efficient implementations of the transition procedures.

In particular, the transition axioms guards should be quickly computable. Because our

programs use the worker model, guards are typically predicates on the existence of work

to be done, i.e., the existence of an element in a container. In addition, our guards contain

predicates on scalar variables.

3. Choosing an appropriate grain size for the transition axioms is also a performance is-

sue, because the parallelism in our programs comes from executing multiple instances of

transition procedures in parallel, not from parallelizing within the transition procedures.

The computation required by a given transition procedure is determined by its transition

axiom, since the transition axioms define the possible post states that must be computed

from a given pre state. If the computation specified by a single axiom is too high. relative

to the total computation in the program, then the program will have insufficient paral-

lelism. If the computation specified by a single axiom is too low, then the overhead of

scheduling (which is a factor even for application-specific scheduling) may outweight the

performance gains from parallelism.

A specification with all three of these subjective qualities is said to be directly irnplementable:

as with many design methods. there is no precise criterion to say when a design admits a good

implementation. In the remainder of this section, we describe some the techniques for obtain-

ing a directly implementable specification for the matching application. The techniques are

generally useful, and in particular, will be used again in the completion example of Chapter 5.

Weakening the Liveness Property

To motivate the need for a more refined specification of the matching program, we begin by

considering a direct implementation of specification 4-3, and show that the specification has

some undesirable features. The problem with the specification is that the axioms allow stut-

tering actions, and as a result, a strong liveness property is necessary to rule out executions

with infinite stuttering actions. The liveness properties are implemented by the scheduler. and

in general. having a strong liveness property may require an unimplementable, complicated.
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or inefficient scheduler. For the specification in Figure 4-3. there are implementations of the

transition procedures such that no scheduler exists. In the decomposition axioms, for example.

the equation (p - t) can be any equation in the container-the choice of which equation is un-

constrained. There is nothing to prevent an implementation of decomposition that repeatedly

chooses the same equation every time it is called. A similar argument can be made for the clash

and consistency axioms, so there are executions that interleave instances of all three axioms.

and still make no progress. Given such transition procedures, it is impossible to implement a

scheduler that ensures the liveness property. In a direct implementation, the scheduler only

controls the order in which procedures are invoked; it cannot control nondeterministic choices

made within the transition procedures.

To allow for flexibility in scheduling, a directly implementable specification should have a

weak liveness property. In describing schedulers for matching, we assume the implemented

specification has a particular liveness property called universal weak fairness. Universal weak

fairness asserts that an implementation must continue to take actions as long as possible; as a

property on executions, this means that any finite execution must end with a state in which no

axioms are enabled. All other fairness notions of practical interest are stronger than universal

weak fairness. In Lamport's Temporal Logic of Actions, universal weak fairness is denoted

WF(A'%I) for program II: Unity and I/O Automata both have the stronger notion of weak fair-

ness. which requires fairness between different actions. Stronger liveness properties such as weak

fairness can. and in the completion example will, be used in directly implementable specifica-

tions. However, using universal weak fairness allows maximum flexibility in implementing the

scheduler, and therefore also allows maximum performance tuning of the scheduler. Further-

more, if implementable specifications for different applications have the same liveness property,

the ideas used in implementing one scheduler, and perhaps the scheduler itself, can be reused

in other applications.

Specification 4-4 satisfies specification 4-3, in the sense that given the same pair of input

terms, both specifications allow (only) finite executions, and the matching substitution produced

by any execution of either specification will be the same substitution. A precise definition

of satisfaction requires identification of the external states as in [AL88] or external actions

as in [LT87], where the external states or actions are things observable by the user of the
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State Components
E : contaiier[equation] + no.match

Initially
E = (pattern - target)

Transition Axioms

decomposition
((p - t) E E) & (-'is-var(p)) & (p.head = t.head) *

E := E + (p[1] - t[1]) + -. + (p[n] -t[n]) - (p -t)

clash
((p - t) E E) & (--is-var(p)) & (p.head $ t.head) :

E := no-match

consistency
((x - ti) E E) & ((x - t 2 ) E E) & -,same-obj((x - tl),(x t2 )) & is-var(x) =>

if ground equal(t1,t 2 ) then E := E - (x - tj) else E := no.match

Liveness

Universal weak fairness

Figure 4-4: Transition-axiom specification with weak liveness property

program. Once external states (or actions) are identified as such, a notion of satisfaction can

be defined to require that those external states (or actions) be preserved. Because matching

is a batch program, the only states of interest to the user are the initial and final states.

Notions of satisfaction between transition axiom specifications have been extensively studied in

the literature- the notions have been formalized in various models, and techniques for proving

satisfaction, based on the idea of a refinement mapping have been described [Lam80, AL88.

LF81, LT87, CM88]. In Section 4.3.5, we discuss satisfaction in more detail and give correctness

arguments using refinement mappings [AL88]. In this section, we include only those ideas that

are relevant to understanding what the various specifications mean, and how they differ.

Specification 4-4 has universal weak fairness as its liveness property, which is sufficient, in

part, because stuttering actions are not legal. The predicates that appeared in conditional

expressions in specification 4-3 now appear in the guards. (In specification 4-4, it is again the

case that none of the axioms are enabled when E is equal to no-match, and the two equations

named in the consistency guard refer to different equations.)

A state machine without legal stutterii.g actions does not necessarily make progress towards
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computing the answer; it may, for example, have cycles in an execution even though any two

consecutive states are distinct. Showing that universal weak fairness is sufficient for specifica-

tion 4-4 is part of the correctness argument given in Section 4.3.5. Roughly, the argument is

that each action makes the number of symbols in E smaller, so they will eventually "consume"

all the equations that satisfy their guards. Furthermore, there are no infinite executions of any

single kind of action, or of any subset of the actions. Consistency actions, for example, cannot

be starved, since any execution made up only of decomposition and clash actions will eventually

run out of equations with non-variable left-hand sides. For this reason, fairness between ax-

ioms (i.e., weak fairness) is implied by universal weak fairness; by stating the weaker notion of

universal weak fairness, it is clear that the scheduler in step 4 need not interleave the different

transition procedures.

In the final state of an execution from specification 4-4, when all the guards are false, E

is in solved form or equal to no-match. Thus, since such a final state will always be reached.

specification 4-4 satisfies the liveness property of specification 4.3.5.

Simplifying the Guards

We argued earlier that the liveness property in specification 4-3 made that specification in-

appropriate for irrlementation purposes, because a scheduler could not be implemented. In

specification 4-4. the liveness problem has been eliminated, but a new problem has been intro-

duced: it is unlikely that the transition procedures have clean and efficient implementations.

We cannot give firm evidence on the point, but we suggest procedure implementations that

illustrate some of the difficulties. An implementation of the decomposition axiom chooses and

deletes an equation from the container and adds its child equations; it is not free to choose any

equation, but only those having equal head symbols on both sides. Similarly, an implementa-

tion of the clash axiom must choose only equations in which the head symbols are different.

Most of the complexity of the matching problem has been pushed into the data structures: it

is unclear that we are closer to solving parallel matching than when we started.

The problem with specification 4-4 is that the guards refer to properties of the elements

within the container, rather than properties of the container alone. This makes it efficient

implementations difficult. Specification 4-5 avoids this problem, since the guards depend on
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State Components
E: container[equation] % equations
B container[equation] % bindings
S : container[equation] % substitution
C: {running, no-match} % clash flag

Initially
E = (pattern - target)
B=S=0
C = running

Transition Axioms

declash
((p - t) E E) & (C 5 no.match) =>

if (is-var(p)) then (E := E - (p - t) & B := B + (p - t))
else if (p.head = t.head)

then E := E + (p[1] - till) + ... + (pin] - tin]) - (p t)
else C := no-match

consistency
((x ti) E B) & (C $ no-match) ,

if (3 t 2 I (z - t2 ) E S) then
(if ground-equal(t 1 ,t 2 ) then B := B - (z t 1 )

else C := no.match)
else (B := B - (z- t) & S := S + (z - t 1))

Liveness

Universal weak fairness

Figure 4-5: Specification with simple guards and a weak liveness property

the existence of equations in the container, but not on properties of those equations. The

container object can therefore be represented by a generic type such as a stack, using push and

pop for the insert and delete operations. respectively.

Specification 4-3 allowed infinitely repeated stuttering actions, because the same action

could be repeatedly "tried" on a single equation. Specification 4-5 records some history infor-

mation, namely, a recording of actions that have been attempted and failed on certain equa-

tions. The single container of equations from the previous specifications is now divided into

three, which are best characterized by their invariants:

* E holds equations with the property that the right sides are ground. (This is also true

87



about E in both of the previous specifications, and relies on the input equation having

this form.)

" B holds bindings, which are equations in which the left-hand side is a simple variable,

and the right-hand side is ground.

" S is a container of equations in solved form, and is therefore also a substitution.

The decomposition and clash actions of previous specifications are merged into the declash

axiom. An equation that appears in B has been placed there by a declash action; such an

equation can be neither decomposed nor used to generate a clash, because the left-hand side is

a variable. Equations in S have been moved there from B by a consistency action when they do

not create a duplicate assignment. In addition to the three containers, there is a separate state

component. C. for recording clashes. In previous specifications, clashes were denoted by setting

E to a special (non-container) value: the same technique could be used here, but because E is

now represented by three components instead of one, the specification would be messy.

In the initial state, E contains the user's input, the other three containers are empty, and

the clash flag is set to running. The declash axiom defines actions that choose an arbitrary

equation in E and, depending on its value, do one of the following: decompose the equation by

replacing it by its children, record a head symbol clash by setting C to no-match, or move the

equation to the container of bindings, B. The consistency axiom defines actions that choose

a binding from B. and either add the binding to the substitution, S, or if the addition would

cause a dupficate variable in S, check the right-hand sides for equality. If the right-hand sides

are equal, nothing else is done, but if the right-hand sides are not equal. an inconsistency has

been detected so E is set to no-match. The explicit test of C in each guard replaces the implicit

condition in the previous specifications that the guards were false if E had been set to no-match.

All legal actions result in a state change, and as with specification 4-4, each action decreases

either the number of function symbols or the number of variables in the state.

Adjusting Minimum Granularity

So far, we have demonstrated two ways in which specifications are refined to make them easier

to implement: weakening the liveness property and simplifying the transition axioms. Another
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factor that should be considered during this phase of program development is the granularity of

parallelism. The transition procedures. which implement the transition axioms. are sequential

procedures that are scheduled in parallel with one another. Thus. they determine the granularity

of parallelism.

If axioms specify actions that are inherently large and expensive, then parallelism will be

limited. Alternatively, if actions are small, then a massive amount of parallelism may be

possible. but unless there are processors to handle that parallelism, performance will be lost

to the overhead of scheduling the transition procedures. Furthermore, if axioms require vastly

different amounts of computation, it will be difficult to produce executions that make effective

use of processor resources during the entire computation; a long-running transition will be a

sequential thread that may limit overall program performance.

To a limited extent, it is better to have axioms that define many small actions than a few

large ones, because the transitions axioms define the minimum granularity of parallelism. In

Section 4.3.4 we show that late in the program development process actions can sometimes

be combined to increase the parallelism grain size, but the reverse transformation, splitting

actions. is more difficult. The qualification on favoring small actions over large is three-fold:

* Combining actions eliminates some, but not all, of the run-time overhead.

" Overly fine-grained programs are overly complicated, since parallelism is being used in

places where sequential code could have been used.

" Programmer time spent implementing fine-grained transition procedures is wasted if the

procedures will later be combined.

The matching example does not illustrate the use of restraint on the smallness of grains; the

total computation in many actions is a single operator comparison, which could not be any

smaller. In the completion program (Chapter 5), however, avoiding overly small grain size is

important. For example, matching is a subproblem of completion, but is not parallelized.

In the context of the matching problem, we demonstrate the process of making the minimum

grain size smaller. Consider specification 4-5, and recall that consistency actions must check

whether two ground terms being assigned to the same variable are equal. If the two terms are

large, then it may be desirable to parallelize the ground-equal operation within matching. since
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if the operation is performed sequentially, it takes time proportional to the size of the terms.

There are a number of way in which parallelism could be used in the ground-equal operation.

It could be treated as a separate problem to be parallelized. but in our approach we require

that implementations of transition procedures are sequential, so a parallel implementation of

ground-equal is not allowed. (We will justify this constraint and discuss generalizations to allow

parallelism at multiple levels in Section 4.4.) In this example, exposing the parallelism within

ground-equal involves adding axioms to the matching specification to describe the actions in

testing two terms for equality. Conveniently, term equality is a special case of matching, so the

same steps used for parallel matching can be used for parallel equality. One way to change the

specification would be to modify the consistency axiom so that the two terms being tested for

equality are added as an equation to E, where declash actions will perform the equality test.

But equations added by consistency actions have ground terms on both sides, so there would be

ai, unnecessary test in declash actions to test whether the left-hand side is a variable. To avoid

this test, we add a fourth container I of identities, which are ground equations that need to be

checked for equality. We then rename the declash axiom to declashE, and add a new axiom

declashI that decomposes and checks for clashes in I. The resulting specification is shown in

Figure 4-6.

Our goal in developing specification 4-6, was to have each axiom describe actions of the

roughly the same complexity. If it takes unit time to check for operator equality and variable

equality, then all actions require computation that is independent of the size of terms (although

dependent on the arity of operators). Thus, measured on the scale of input size, we have

met the design goal. The consistency action, however, requires a test to determine whether a

variable has already been bound in S. and depending on the choice of representation for S, this

cost of this test may not be constant as the size of S grows. In general, performance concerns

at this stage of design involve worst case performance for the actions described by transition

axioms: the actions should be small enough to provide sufficient parallelism, large enough to

avoid excessive overhead, and relatively uniform in cost to simplify scheduling.
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State Components

E container[equation] % equations
B container[equation] % bindings
S container[equation] % substitution
I container[equation] % identities
C {running, no-match} % clash flag

Initially
E = (pattern - target)
B=S=I=0
C = running

Transition Axioms

declash-E
((p t) E E) & (C # no-match)

if (is.var(p)) then (E := E - (p - t) & B := B + (p t))
else if (p.head = t.head)

then E := E + (p[1] - t[1]) + ... + (p[n] - t[n]) - (p t)
else C := no-match

consistency
((- - ti) E B) & (C 0 no-match) =

if (3 t 2 I (X * t 2 ) E S) then
(B B - (x t1 ) & I I + (tI t 2))

else (B := B - (x - tj) & S := S + (x -t))

declashJ

((p - t) E I) & (C 5 no-match) *

if (p.head = t.head)

then I = I + (pil - t[1I) + ... +(p[n - t~nI) - (p t)
else C := no.match

Liveness

Universal weak fairness

Figure 4-6: A fine-grained specification
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4.3.3 Transition Procedures for Matching

In this section we describe the third step of the transition-based approach. which involves

writing transition procedures. The final specification produced during refinement in step 2

meets the guidelines for directly implementable specifications. In this section we refer to that

spec;cation (in Figure 4-6) as the directly implementable specification for matching.

Requirements on Transition Procedures

Each transition procedure executes as a single sequential thread, but the procedures must

behave correctly when run concurrently with each other. Each procedure has a sequential

specification based on a transition axiom, and the set of procedures is required to behave as if

they were atomic. We give the precise correctness requirements below.

The first step in implementing the transition procedures is to choose representations for

the state components in the specification. The objects need not be the exact type named

in the specification. but they must have operations to create initial states from the input.

and retrieve answers from the final state. In our examples, most of the state components

are implemented by linearizable objects. This is not a requirement of the approach, since in

some cases 1'igh-level synchronization within the transition procedures will obviate the need

for low-level synchronization within the objects. In our experience, linearizabilitv usually, but

not always, lead to more highly concurrent transition procedures and more readable code than

other strategies.

The set of transition procedures consists of a procedure for each transition axiom in the

directly implementable specification, and another procedure used to detect termination. For

each guarded command G * S called name in the directly implementable specification, a

procedure is implemented according to the following interface:

name = procedure (xl,.... ,) signals (stutter)

ensures: if G is true, either perform S or stutter

if G is false, stutter

The arguments, l, ... ,z, are state components (typically those named in either G or S),

along with optional auziliary state components used by the implementation. An example of an
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implementation that uses such auxiliary objects is given below in the transition procedures for

matching. When a procedure invocation stutters. it means that the state is unchanged. and the

stutter exception is raised. The stutter exception will be used when implementing the scheduler

to avoid repeatedly calling procedures that do nothing.

The last procedure, called termination, is a predicate that returns true exactly when all the

guards are false. The termination procedure will be used in the scheduler to detect that all

computation has been done, so that the scheduler may itself be halted.

termination = procedure (zx ...,x, ) returns (bool)

ensures: if all guards are false, return true

if any guard is true, return false

Although the transition procedures name multiple objects (that can be mutated by the

procedures), this is merely a convenience to document which state components are used by

which transition procedures; the transition procedures can be viewed as operations on the

single data type that constitutes the program's state. Using this view, the correctness notions

of Chapter 2 are immediately applicable.

The set of transition procedures must be linearizable, non-stopping, and productive: the

last of these is defined below. The procedures have no interference specifications, and the

specifications are non-waiting, so the scheduler can safel invoke any procedure at any time. The

non-waiting property was realized by extending the guarded commands to allow stuttering, since

a guarded command denotes a waiting operation with the when clause given by the guard. The

specifications admits stuttering in any state, even when the procedure is enabled, i.e.. the guard

of the corresponding transition axiom is true. The reason for allowing stuttering of enabled

procedures is so that procedure can abort (by stuttering) if it determines that completing the

operation normally would be too expensive, e.g., because needed locks are being held by some

other operation.

Because the transition procedure specifications allow stuttering in any state, an additional

liveness property is placed on the transition procedures to preclude implementations that always

stutter. The stutter-free form a sequential history H (as defined in Chapter 2), is the subhistory

with all maximal finite sequences of stuttering operations removed. A linearizable history H

is productive if there is a linearized history H' of H such that its stutter-free form is correct.
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Thus. productivity allows for finite sequences of superfluous stuttering, but if there is an infinite

sequence of stuttering operations. the stuttering procedures must not be enabled.

As noted in Chapter 2. a consequence of using these correctness conditions is that certain

producer/consumer-style relationships cannot exist between procedures. For example. if a con-

suming procedure were designed to block and wait for data from the producer, then executions

in which no producer is running would be blocked. Instead, the consuming procedure is im-

plemented to check for data to be consumed, and return if none is available; it is then up to

the invoking process (in our case the scheduler) to determine whether the consuming procedure

should be retried or not. This program structure will occur frequently in programs developed

with our method.

There is also an informal performance requirement on the transition procedures: they must

exhibit real concurrency. Ideally. a procedure invocation would not be slowed by other concur-

rently executing procedures, but, I t-'ause there may be synchronization for access to common

data, this goal cannot always be met. The level of concurrency allowed by these procedures will

limit the amount of parallelism in the overall program. so at a minimum, it should be faster to

run two piocedures concurrently than to run them serially, one after the other. This disallows

the obviously correct implementation in which each procedure executes entirely within a single

critical region, sinre it will result in a program with almost no real parallelism. To obtain a high

degree of concurrency, we use the heuristic that critical regions should be short, infrequent, and

shared with few other procedures.

Transition Procedure Implementati,ns

The state components in the directly irrplementable specification consist of four containers of

equations, and a flag to denote a detected clash. As a first-cut design, we make equations

immutable objects, and the containers that hold them mutable, linearizable queues (One of

the containers will be changed below, when we are better able to motivate the choice.) The

clash flag, C, is simply a shared memory location.

Writing transition procedures for the directly implementable specification would be straight-

forward if thev were only to be invoked serially. Consider. for example, the implementation

of dcclashI and termination in Figure 4-7. In any serial invocations, these procedures behave
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declashi = procedure (I: container[equation], C: location) signals (stutter)
if (C = noimatch) then signal stutter
e: eqn := dequeue(I)

except when empty: signal stutter
if (head(e.left) = head(e.right))

then
for (i := 1) to arity(e.left) enqueue(I, (e.left[i] - e.right[i]))

else C := no-match
end declashI

termination = procedure (E,IB: container[equation], C: location) returns (bool)
if (C = no-match) then return(true)
if ((size(E) = 0) & (size(B) = 0) & (size(I) = 0))

then return(true)
else return(false)

end termination

Figure 4-7: Matching procedures that work serially

according to their specifications, but when invoked concurrently they do not. We demonstrate

the problem by looking at an execution that starts from the (reachable) program state in which

E and B are empty, and I has the single equation (f(a, b) - f(a, b)). The following interleav-

ing of operations is possible: declashI removes the last equation, (f(a, b) - f(a, b)), from I

so 1= B= E= 0; termination tests the three containers I, B, and E, finds them empty, and

returns true; declashI inserts the two child equations, (a - a) and (b - b) into I and returns.

This execution is not linearizable, because in a linearized execution, termination would have to

be executed either before or after declashI. I is non-empty in both the state before and the

state after declash..J executes, so in either state the guard for declashlI guard is true. Thus.

termination should have returned false.

One way to repair the implementation would be to add a critical region to declashI starting

before the dequeue and ending after the enqueue, and add the same critical region around the

size test in termination. The effect of this would be to serialize two concurrent instances of

declashI, as well as concurrent instances of declashI and termination. Implementations of

the other two transition axioms, declashE and consistency, would have similar problems, so

those procedures would also have similar critical regions. The three procedures implementing
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transition axioms could protect their critical regions with distinct locks, all acquired by the ter-

mination procedure. These procedures could safely be invoked with any degree of concurrency.

but at most one instance each of declash-I, declash..E, and consistency would actually execute

concurrently. Because the critical regions within the transition procedures prevent concurrent

access to the containers, this implementation would have the advantage that none of the con-

tainers require internal synchronization-any serial queue implementation would do. Expecting

only a small constant speedup in matching, we implemented these procedures as described. The

performance was even worse than expected: the synchronization overhead resulted in a match-

ing program that was significantly slower than a sequential implementation on all inputs. This

led us to the development of a set of transition procedures with higher throughput.

Instead of adding long critical regions to the code, a better implementation uses linearizable

container types and incorporates auxiliary variables to achieve inearizability at the level of

the transition procedures. These procedures, shown in Figure 4-8, resulted in the best overall

performance of any we considered.

The transition procedures in Figure 4-8 are linearizable, non-stopping, and productive. In

Figure 4-7, the problem is that the termination condition (I, E, and B being empty) could

temporarily be true while equations were being moved between containers or replaced by child

equations. Because the transition procedure specifications admit stuttering even when the

guard is enabled, it is acceptable for actions to see empty containers and therefore stutter:

the only problem is that termination must not return true when a container is about to be

refilled. In Figure 4-8, three auxiliary objects, E-size, B-size, and I-size, are added to the

state to represent the size of the three containers being tested. The objects hold the exact size

of the corresponding container when no transition procedure is actively using that container,

but when such a procedure is in progress, the objects may hold an out-of-date value. The

auxiliary objects have the flavor of history variables that are useful in correctness proofs of

parallel programs [OG76], but the auxiliary objects in our implementation actually exist.

The state in Figure 4-8 uses four different linearizable data types: queues of equations

(eqqueue), accumulators, memory locations, and mappings. The state components are given

here with their corresponding types-the type of C is a location that may hold one of the named

values:
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declash-E = procedure (E. B: eq..queur C: ptr[int],
E-.size. B-size: accum) signals (stutter)

if (C = no-match) then signal stutter
c: eqn := dequeue(E)

except when empty: signal stutter
if is-var(e.left) then

accum$add(B-.size, 1)
accum$add( E.size, - 1)
enqueue(B. e))

else if (head(e.left) = head(e.right)) then
{accumSadd(E~size, arity(e.left) - 1)
for (i := 1) to arity(e.left) enqueue(E, (e.left[i] e.right[i]))}

else C := no-.match
end declash2E

consistency =procedure (B, 1: eq..queue. S: substitution. C: ptr(int].
B..size. I-size: accum) signals (stutter)

if (C =no-.match) then signal stutter
e: eqn := dequeue(B)

except when empty: signal stutter
assign(S, e.left, e.right)

except when already.-bound (t):
f{accurn$add(L-size, 1)
accum$add (B..-size, -1)
enqueue(I. (e.right t)

return}
accum$add(B-.size, - 1)

end consistency

declash.J = procedure (I: eq..queue. C: ptr[int], I-size: accum) signals (stutter)
if (C = no-.match) then signal stutter
e: eqn := dequeue(I)

except when empty: signal stutter
if (head(e.left) = head(e.right)) then

{accum$add(I-size. arity(e.left) - 1)
for (i := 1) to arity(e.left) enqueue(I, (e.left~i] -_e.right[i]))}

else C := no-.match
end declashi

termination =procedure (C: ptr[int], E..size, B..size, I-size: accum) returns (bool)
if (C =no-match) then return(true)
if ((accum$ read (E -size) = 0) & (accu m $read(B -size) = 0) & (accum$read(L-size) =0))

then return(true)
else return(false)

end termination

Figure 4-8: Transition procedures for matching
97



E. B. I: eq.queue

E-size. B-size. I-size: accum

S: mapping

C: location[{running, no-match}]

In writing the transition procedures, lower level data types are assumed to be linearizable.

Invocations of enqueue and dequeue, for example, can be viewed as indivisible operations.

although they can, and in our implementation do, execute concurrently with one another. The

mapping abstraction was specified and implemented in Chapter 3. Recall that Mappings are

multi-ported objects, and the insert operation interferes with other instances of insert on the

same port. This interference requirement is met by making the state multi-ported as well, and

giving each thread in the scheduler a different port. This level of detail is not evident in the

code given below.

The termination procedure checks the vpiues of E-size, B-size, I-size. rather than the size

of each container. In the initial state, E.size is one, and B.size and I.size are zero. Each of

these size objects is updated in a delayed fashion by the procedures accessing the corresponding

container. For example, when the declash-E procedure removes an element of E that needs to

be decomposed, the E.size value is not updated until after the need to decompose has been

determined, and after the number of child equations is known. At that time, one less than the

number of children is added to E.size: this single atomic update shadows the actual size of E.

which is first decremented by one and then incremented by the number of child equations. Other

declashE actions may observe an empty E, and therefore stutter, but concurrent termination

actions will not observe a zero value for E-size. Similarly, when an equation is moved from one

container to the next, for example, from E to B by a declash-E action, the B-size accumulator

is incremented before the E-size accumulator is decremented. Because the three sizes are tested

in the order E-size, followed by B-size. followed by I-size, the entire expression will only be

true if all of the sizes are zero, and will remain zero. We discuss this point in more detail in

Section 4.3.5.
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Testing and Debugging Transition Procedures

Given the complicated nature of the transition procedures. correctness arguments of the kind

given in Section 4.3.5 are important. However, there are generally easier methods for finding

programming bugs than development of a correctness proof. The transition-based method

supports modular debugging and testing, in addition to correctness arguments. To debug a

set of transition procedures, the easiest first step is to run them sequentially, ridding them

of bugs that have nothing to do with parallelism. This technique is not usable for arbitrary

parallel program modules, because, for example, one procedure might depend on the concurrent

execution of another procedure to make progress. The technique can be used with transition

procedures because the non-stopping requirement rules out such dependencies.

A second debugging technique is to test subsets of the transition procedures. For example.

multiple instances of the same procedure typically share data in a nontrivial way, so running

some number of instances of the same procedure concurrently can locate bugs within that

procedure. In the matching program, for example, the state can be initialized with ground

equations in I, and every other container empty, and the declashI procedure can be tested alone

or with the termination procedure. Ideally, one would examine all combinations of procedures.

on all input values, for every interleaving of the lower level operations; this would literally

test the condition, "every concurrent execution must be equivalent to some sequential one."

Given the impossibility of this task, we settle for a few interesting executions; combinations are

limited to two or three concurrent invocations, input values are chosen as they would be for

testing sequential programs, and various interleavings are forced by controlled simulation or.

haphazardly, by inserting delays into the code.

Testing and debugging parallel procedures is still a difficult process, but in this case is

greatly aided by the modularity of the design. In testing the transition procedures for match-

ing, it is sufficient to consider interleavings (rather than concurrent executions) of the lower

level operations, since the operations can be tested separately during development of the data

abstractions.

From linearizability it follows that any concurrent execution is equivalent to some sequential

one, and combined with the partial correctness of transition axioms, a powerful property of the

transition procedures follows: any (possibly concurrent) execution of the transition procedures
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is safe. i.e., does not compute an incorrect answer, and if finite, can be extended to one that

computes the correct answer. This property extends the partial correctness of the transition

axioms to concurrent executions, and has practical ramifications as well; while the axioms only

describe transitions abstractly, the procedures implement them. These conditions gives us a

great deal of flexibility when designing a scheduler, since if the transition procedures have been

implemented correctly, the scheduler cannot create race conditions or deadlock between them.

4.3.4 A Scheduler for Matching

The final step of the transition-based approach is an implementation of a scheduler for the

transition procedures. This section describes our strategy for implementing schedulers in gen-

eral, and some schedulers for the matching problem in particular. Since performance tuning

is a significant part of scheduler development, performance numbers for matching are included

here.

Scheduler Requirements

Before presenting the scheduler step of the approach, we define some terminology and discuss

the general problem of scheduling multiprocessor programs.

A thread is a lightweight process. Each thread has its own stack of procedure invocations, but

there is a single object heap common to all threads in a program. We assume our programming

language has a construct such as fork. for starting a new thread. The fork primitive takes a

procedure name and a list of arguments. and it has the effect of starting a new thread to execute

the procedure. Because the unit of work associated with a thread is a procedure, one might

be misled into thinking that any procedure that can be evaluated in parallel should be "forked

off." However, when the number of threads is much greater than the number of processors.

or the threads are short-lived, the overhead of creating separate stacks and switching between

thread contexts is prohibitive. A second problem with having more threads than processors

is that scheduling of threads is done by the system scheduler; application-specific scheduling

usually yields much better performance [RV89, JW90].

The solution to both problems is to start a fixed number of threads at the beginning of

a program's execution, and to schedule tasks onto these threads. Examples of this approach
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include tuple spaces [CG89], work crews [RV89], and supervisors [JW90]; the approaches differ in

the kinds of synchronization allowed between tasks. and the underlying scheduling algorithm.

A task is a procedure invocation (a procedure plus input arguments) that is guaranteed to

terminate.

A scheduler for a set of transition procedures is a multi-threaded program that concurrently

invokes the procedures. The correctness requirement on a scheduler is that it must guarantee the

liveness property of the directly implementable specification from step 2. Thus. the distinction

between safety and liveness in the specification translates to a separation between requirements

on the transition procedures and requirements on the scheduler in the implementation.

Because the directly implementable specification has a weak liveness property, it is not

difficult to meet the correctness requirement of the scheduler. Most of the work of producing

a scheduler is performance tuning, since the effect of scheduling decisions on performance is

often difficult to predict. The design process can be seen as largely trial and error, wherein a

scheduler is designed, implemented, and performance tested, and if the result is unsatisfactory.

the entire process is repeated. Without the weak correctness requirement on the scheduler. this

development cycle would be prohibitive.

For simplicity, we assume that the number of available processors is a known quantity. i.e.. it

is either known at compile time, or can be quickly determined at run-time before the application

begins the main computation phase. Once determined, this quantity remains constant. A

scheduler spawns a fixed number of threads equal to the number of available processors. and

each thread runs a copy of scheduling code- it is typical, although not necessary, that the code

run by each thread is identical.

Our assumption that there are at least as many processors as threads is an over simplifica-

tion. since the operating system may, at any time, usurp a processor for its own use. If a thread

is de-scheduled while holding a lock. the performance impact can be significant. A different

operating system interface could prevent this problem by allowing the operating system sched-

uler to communicate with the application scheduler; if communication is sufficiently limited.

this interface need not incur the full cost of operating system scheduling [ABLL90]. Using our

method. program performance depends on the number of threads being no greater than the

number of processors. but program correctness does not depend on this assumption. Correct-
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ness of the scheduler, and therefore the program. does depend on fairness of the underlying

system scheduler in scheduling threads.

Assumptions and Implications

Application-specific scheduling is more efficient than relying on a system-defined scheduler for

a number of reasons. At the system level there is no information about the kinds of tasks being

executed in parallel, so worst-case assumptions are often made. For example, when one task

can depend on the execution of another, the scheduler preempts tasks to guarantee that each

gets an opportunity to execute. The direct cost of switching contexts, along with the indirect

costs due to lost cache context, can make such fair scheduling strategies prohibitive. Contexts

can also be quite large on some machines. stressing system resources beyond their capacities.

In general, application-specific scheduling can use information about the program to determine

points at which contexts are small. and therefore context switches are cheap. An additional

benefit follows from our approach to building parallel programs. Because of the correctness

condition on transition procedures, there can be no dependencies between procedures, so each

is run to completion once it is scheduled.

A second advantage of application-specific scheduling is the ability to use knowledge about

which tasks should be favored to get an efficient schedule. For example, some tasks may

generate more work to do in parallel, thereby making it possible to keep more processors busy

finding a solution. Alternatively, some tasks may lead to useless work; for example. speculative

parallelism can lead to redundant computation. In our programming model, in which each

transition procedure is the implementation of a guarded command, there is an advantage to

executing a procedure for which the guard is true.

Because all of the transition procedures have non-waiting specifications and non-stopping

implementations, in any execution there is some procedure that will eventually return. By

induction, we can prove that if the scheduler stops invoking procedures, all invoked procedures

will eventually terminate. However, the scheduler may invoke transition procedures that will

simply stutter, and there is no run-time mechanism that the scheduler can use to determine

whether or not a transition procedure is going to stutter. In defining this interface between

transition procedures and the scheduler, we are trading context switching overhead (of a sched-
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match-state = record[E. B, I: eq.queue. S: substitution, C: ptr[int],
E.size. B.size. I-size: accum]

schedloop = procedure (m: match-state)
while- termination(m.C, m.Esize. m.Bsize, m.1..size)

{declash-E(m.E, m.B, m.C. m.E..size, m.Bsize)
consistency(m.B, m.I, m.S, m.C, m.Bsize, m.Isize)
declashA(m.I, m.C, m.Isize)}

end schedloop

scheduler = procedure (m: match.state)

for (i := 1) to process-limit do
fork(schedioop, m)

end scheduler

Figure 4-9: Distributed round-robin scheduler

uler that allows procedures to block) with the cost of stuttering procedure invocations. The

judiciousness of this choice depends on the possibility of defining schedulers that can predict

efficient executions based on static information about the application and dynamic information

about prior stuttering invocations.

Scheduler Implementation

In the directly implementable matching specification (Figure 4-6), there is a single liveness

conditions, universal weak fairness. We begin by presenting an obviously correct scheduler for

matching, one in which each thread alternates among the transition procedures in a round-

robin style, and halts whenever the termination procedure returns true. The code for all of

the scheduling threads is given by the sched..loop procedure in Figure 4-9. The scheduler is

distributed, as demonstrated by the fragment of the scheduler procedure.

In general, it is difficult to predict a priori what scheduler will yield the best performance.

Performance models of parallel machines are not detailed enough to allow accurate predictions

about task handling overhead, contention for application-level locks, and contention for system

resources such as the memory bus. While more precise performance models would be helpful.
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it is not clear that a model containing all of these details would be usable. Therefore. the

scheduling step in the transition-based approach allows for a significant amount of performance

tuning. Not all performance problems can be addressed by changing the scheduler; for example.

reducing contention within a data structure is often done by re-designing the data structure.

However, we describe some transformations to the scheduling algorithm that improve the per-

formance. The transformations themselves are useful in other applications, and the effect they

have on performance is significant.

Performance Tuning

Before describing the scheduler transformations. some comments about the performance num-

bers are timely. All performance numbers are taken on a Firefly multi-processor (TSJ871. using

up to five CVAX processors. The input to the matching program is a pair of terms. and in

discussing performance, we work with a set of inputs that characterizes various classes. The

inputs are not typical of real applications of matching, because they are too large (tens of thou-

sands of function symbols in each term). For small input terms, the cost of starting threads

exceeds the cost of performing the matching operation.

Each of the inputs in the test suite is characteristic of a class of inputs. See Figure 4-10 for

an example of performance statistics; the inputs are named in the left-most column.

" BalGround contains two identical ground terms. Since there are no variables in the input,

this example will not use any consistency or equality steps. The terms are perfectly

balanced trees. This should be the easiest input to parallelize.

" BalRepeatl-BaRepeat3 are also balanced, but each contains variables in the pattern.

BalRepeatl has the fewest variables, while BalRepeat3 has the most (a variable at every

leaf). Each variable in the pattern is repeated, so these inputs test the effect of collisions

in the mapping abstraction.

" BalDiffer is balanced with variables, but the variables are not frequently repeated, so

collisions are unlikely, but the answer mapping grows large.

* UnbalDiffer and UnbalRepeat are unbalanced trees. UnbalRepeat has frequently repeated

variables, while UnbalDiffer does not. The unbalanced terms test processor utilization
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absolute speedup speedup speedup speedup speedup
1 thread 1 • 2 1 : 3 1 : 4 1 : 5 seq : 5

BalGround 113 ms 1.56 1.91 2.12 2.20 0.55
BalRepeatl 803 ms 1.81 2.30 2.62 2.78 0.62
BalRepeat2 833 ms 1.82 2.26 2.59 2.80 0.66
BalRepeat3 908 ms 1.76 2.30 2.70 2.83 0.50

BalDiffer 929 ms 1.76 2.36 2.70 2.85 0.59
UnbalRepeat 301 ms 1.74 2.22 2.49 2.68 0.56
UnbalDiffer 890 ms 1.68 2.24 2.66 2.73 0.52

Figure 4-10: Performance of the round robin scheduler on stable inputs

with heterogeneous input data.

9 ClashLT, ClashRT. ClashLB. and ClashRB all contain function symbols in the pattern

that clash with the corresponding symbol in the target. The clash symbols occurs in a

different positions in each example. The positions are, left top, right top, left bottom.

right bottom, respectively. These inputs test processor utilization for data that results in

performance instability.

Figure 4-10 contains data for the matching program using the scheduling algorithm in

Figure 4-9, which was one of the first schedulers we implemented. The first column of numbers

is the absolute performance of the program using only one thread. The middle four columns are

the speedup of the two, three, four, and five threads, relative to the one thread version (i.e.. the

parallel program using only one scheduler thread). The last column is the speedup of the five

thread parallel program, relative to a sequential implementation. The sequential program was

implemented before the parallel one, and and is optimized for sequential execution. It serves

as a reality check to ensure we are not comparing speedups of a slow parallel program against

itself.

This set of numbers includes only the stable inputs, i.e., those without clashes. Even for

these well-behaved inputs, the performance of this version of matching is discouraging. Not

only does the sequential program consistently out-perform the parallel one, but when comparing

the parallel program against on one thread, the speedups never exceed a factor of 3.00. These

results led us to consider variations on the scheduler.
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absolute speedup speedup speedup speedup speedup
I thread 1 : 2 1 : 3 1 : 4 1 : 5 seq : -

BalGround 1635 ms 1.97 2.04 3.71 3.92 3.62
BalRepeati 12213 ms 2.02 2.23 3.91 4.04 3.68

BalRepeat2 14028 ms 2.02 2.32 3.86 4.38 3.65
BalRepeat3 16888 ms 1.92 2.74 3.37 3.92 2.46
BalDiffer 20235 ms 1.90 2.69 3.47 4.06 2.33

UnbalRepeat 17490 ms 1.90 2.75 3.40 3.93 2.38
UnbalDiffer 4357 ms 1.96 2.90 3.88 4.79 4.77

Figure 4-11: Performance of a coarse grained scheduler on stable input

The easiest change that can be made to the scheduler is to use a different execution order

for the transition procedures. For example, each transition procedure can be embedded in a

u'hile loop that repeatedly calls the transition procedure until it stutters. One transition can

also be prioritized over another by invoking it with greater frequency. We tried a number of

these reordering schemes. but none had a significant impact on performance. The round robin

scheduling order is not the best one for all applications. For example, the completion program

in Chapter 5 prioritizes some transitions over others, and changing the order has a significant

effect on performance.

The control structure in Figure 4-9 is not the only thing that determines thr , lule. The

choice of data structure for representing containers also has an impact. The transition axioms

do not specify any order on the elements in containers, so stacks or priority queues or other

container-like structures can be used in place of queues. The order in which elements are chosen

from the containers does not change the order in which transition procedures are invoked, but

does change the order in which data is used. We experimented with stacks as well as queues.

but again there was no positive change in performance. (When stacks are used. the parallel

program is much closer to ihe depth-first sequential one, so the input- with clashes are no longer

wildly different.) Again, the completion program will make use of a different data structure, a

priority queue. which is essential to that program's performance.

Scheduler transformations involve changes to the code in Figure 4-9. and sometimes to

the transition procedures. A scheduling change that significantly improves performance is to

increase the grain size of the tasks being scheduled, and this involves changing the transition
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absolute speedup speedup speedup speedup speedup
l'thread 1 : 2 1 : 3 1 : 4 1 : 5 seq: 5

ClashLT 4 ms 0.61 0.39 0.33 0.28 0.10

ClashRT 236 ms 2.03 20.74 16.65 14.96 13.43
ClashLB 234 ms 2.04 1.86 1.91 1.91 1.75
ClashRB 457 ms 2.03 2.04 3.66 3.57 3.42

Figure 4-12: Performance of a coarse grained scheduler on unstable input

procedures. To change the grain size, the transition procedures must, in some cases, invoke other

transition procedures directly. For example, the declashE procedure calls itself recursively

some number of times, before new equations are added to the container. Figure 4-11 gives the

performance results for clash-free inputs using the algorithm with larger grain size. 2

If we consider the unstable inputs, instead, the speedups become very erratic. Results for the

inputs with clashes are shown in Figure 4-12. Because we want an efficient sequential program as

the baseline, a depth' rst evaluation order is used in that program. The parallel program. on the

other hand, has a natural breadth-first order that comes from the parallel evaluation of multiple

children of a single node. The parallel version is not entirely breadth-first, however, because

when the grain size is increased, large sub-problems within matching are done sequentially, and

therefore depth-first. In matching it is easy to see why placement of clashes can result in super-

linear speedups, or case in which the parallel program is slower than the sequential one. Such

anomalies should be expected in problems with performance instability, but unfortunately. they

are not always easy to explain. With completion. for example, we observed similar, although less

extreme, performance anomalies: the completion process is complex enough that the anomalies

are harder to explain.

4.3.5 Correctness Arguments

Th> section presents the correctness arguments for two steps in the matching example. First,

we show that each of the refined specifications in Section 4.3.2 satisfies the original one. We then

give some of the key arguments for the correctness of the transition procedure implementations.

'The coarse-grained scheduler was run on much larger examples than were feasible with the fine-grained
scheduler. Thus, the absolute performance should not be compared between the two sets of numbers.
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The exercise of presenting these proofs is instructive: it demonstrates what should be proved

about programs developed using the transition-based approach. and some of the techniques

that are useful in finding the proofs. The correctness arguments for matching use standard

refinement mapping proof techniques [AL88].

Correctness of the Transition-Axiom Specifications

In Section 4.3.1 we argued that specification 4-3 solves the matching problem. To show that

the three specifications 4-4 through 4-6 also solve the matching problem, we can either make a

direct argument showing that each specification solves matching, or an indirect argument that

each specification satisfies specification 4-3. The latter approach is advantageous for proving

the correctness of large complex algorithms, because the proofs can be done in stages.

An interesting aspect of the correctness arguments is the existance of parallels between

the proof effort and the specification effort. Each of the transition-axiom specifications was

developed with a particular goal in mind, and the effect of achieving that goal was to make

a particular piece of the satisfaction proof non-trivial. Specification 4-4 replaced the strong

liveness property of specification 4-3 with something weaker, so proof of the liveness property

constitutes the bulk of the satisfaction argument between them. Specification 4-5 replaced the

transition axioms of specification 4-4 with axioms having simpler guards; the proof of the safety

property is the more difficult part, and it relies on proving an invariant that shows the weaker

guards to be sufficient. Specification 4-6 is a classic refinement of specification 4-5. because a

consistency action in the first is replaced by a sequence of smaller actions in the second; the

proof makes use of history variables [0G76], a proof technology known to be useful for such

refinments.

The usual notion of satisfaction between transition axiom specifications requires preservation

of whatever states (or actions) are externally visible. For example, in the state-based approach

of [AL881, certain components of the state are designated as external; one specification is

said to satisfy another if for any live execution of the first, there is a live execution of the

second such that the histories restricted to external states are identical (modulo finite stuttering

actions). The reader is referred to [AL88] for a precise definition of satisfaction; similar notions

of satisfaction are defined for the I/0 Automata model [LT87] and for Unity programs [CM88].
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Technically, our series of specifications, 4-4 through 4-6 do not satisfy specificaton 4-3 be-

cause the initial and final states differ in minor ways. For example, the container E in spec-

ification 4-4 holds the user's input in the initial state and the answer in the final state. If E

is designated as the external state of the specification, then the intermediate values of that E

takes on mid-execution, which are neither the input nor the answer, will be observable to the

user. Furthermore, in specification 4-5, the input starts in container E, but the answer ends up

in container S, so neither of these will have the same sequence of values as the container E in

specification 4-4.

The problem can be solved by adding an additional state component, for example, a con-

tainer called input-output, in which the input and output of matching are stored. Each of the

specifications could be augmented to admit an action that copies the input into the expected

component, and as the last action, replaces the value of intput-output with the answer. Thus.

input-output is the external state. The user only sees two values in input-output, the input and

the output, and (assuming our specifications compute the right answer) the output will always

be the matching substitution for the input.

Because this technical solution has little value in understanding the matching specifications.

or how they relate to one another, these augmented specifications and their correctness argu-

ments are not given. Instead, we show the important pieces of the correctness arguments. i.e..

the invariants within and abstraction functions between specifications.

An abstraction function maps states of a refined specification to states of the original (ab-

stract) specification. Abstraction functions have been used extensively in the context of abstract

data types for sequential programs [LG86], and by others in reasoning about parallel and dis-

tributed programs [AL88, LT87, HW90]. 3 In our use, the state machine part of a specification

is viewed as an abstract data type, where the state components contain the type's values, and

the transition axioms specify the type's operations. The principle difference between reason-

ing about most sequential data type implementations and reasoning about transition-axiom

specifications is that the latter has a liveness property as part of the proof obligation.

Let A be an abstraction function on some set of states S. If (sI, s2 ,...) is an execution of

3[LT87] and [HW90] use the related notion of a possibilities mapping, which maps a single to state to a set
of states.
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states in S. then its abstracted execution is the sequence (A(s 1 ),A(s 2 ), ...). The stutter-free

form of an execution is another execution constructed by removing all maximal finite sequences

of stuttering actions. Given two specifications S, and S2 , we say S is a refinement of S2 by A.

if for every execution allowed by S,, the stutter-free form of the abstracted execution is allowed

by S2.

To prove that S is a refinement of S2, there are three steps [AL881:

1. Define an abstraction function, A. from the states of S , to states of S2.

2. Prove that S, ensures the safety property of S2. First, show that for all initial states s

of S1, the state A(s) is an initial state of S2. Second, show that for every pair of states

(sl, s2) that is a legal action of S1, the action (A(si),A(s 2)) is a legal action of S 2.

3. Prove that for any live execution of S1, its abstracted execution meets the liveness property

of S2 . These proofs are typically done by induction.

We show that each of the specifications in this section are refinements of the original spec-

ification. In general. we may need notions other than refinement for showing satisfiability, for

example, to show that a coarse-grained specification satisfies a finer-grained one as is the case

in Chapter 5. In this chapter, refinement is sufficient, and since it is a transitive notion, we

show that each specification is a refinement of the one presented before it.

Lemma 2 Specification 4-4 is a refinement of specification 4-3.

For a proof of Lemma 2, let the abstraction function, A, be the identity function. The safety

property is obviously ensured, since both specifications have the same initial conditions, and

every action allowed in 4-4 is also allowed in 4-3. (The only difference between the sets of actions

is that specification 4-3 allows stuttering actions that are not allowed by specification 4-4).

Proving the liveness property is more interesting. First, we argue that every execution

terminates by showing that it must reach a state in which no axiom is enabled. Assume that

a state is a container of equations or is a special value no-match, as specified in 4-4. Given

a state s, let vars(s) be the number of variables in s, and ops(s) be the number of function

symbols in s; in both cases multiple instances are counted multiple times. For example, if s is

the container {(f(x) - f(c)),(g(x) f(c))}, where x is a variable and c is a constant, then
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vars(s) = 2 and ops(s) = 6. If s is equal to no-match, then vars(s) = 0 and ops(s) = 0. Let -<

be a partial ordering on states defined by s, -< s2 if and only if one of the following holds:

* tars(s1 ) < vas(s2 ), or

# vars(s1 ) = vars(s2 ) and ops(sI) < ops(s 2).

Any legal action of specification 4-4 results in a state change, and the new state is strictly

smaller (by -<) than the old one. Consider a legal action a = (s 1 ,s 2 ) and observe that S2 -< sI:

1. If a is a clash action, then ops(sl) >_ 2, and vars(s2 ) = ops(s 2 ) = 0.

2. If a is a decomposition action, then vars(s2 ) = vars(sl) and ops(s2) = ops(sl) - 2.

3. If a is a consistency action, then vars(s 2) = vars(s1 ) - 1.

Therefore. every execution eventually reaches a state in which none of the axioms is enabled.

Implicitly, this argument shows why the specification did not require a stronger fairness prop-

erty, such as fairness between the axioms. Having shown that any execution eventually reaches

a state in which all guards are false, we argue that in a final state either E is equal to no-match

or E is in solved form. Assume E is not equal to no-match. When the decomposition and clash

guards are false. E contains only equations with variables on the left-hand side, and when. in

addition, the consistency guard is false, each variable occurs at most once in E. Therefore. E

is in solved form.

Lemma 3 Spccification 4-5 is a refinement of specification 4-4.

Lemma 3 states a second refinement relation on specifications. In the proof of this lemma.

the abstraction function, A, maps a state of specification 4-5 (four equation containers and a

clash flag) to a state of specification 4-4 (a single object that is either an equation container or

no-match).

A : (container(equation]) 3 x {running, no.match} - (container[equation] + no-match)

A(E,B,S,C) -if (C = no-match) then no.match else EU BUS

Expanding on the view that a state machine is simply an abstract data type, we note that

the invariants given earlier on state components E, B, and S are the analog of representation
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invariants in abstract data type implementations. Let s = (E, B. S. C) be a state of specifica-

tion 4-5, and 1" be the conjunction of the state component invariants.

1((E.B,S)) E ((e E E . is.ground(e.right)) k

(e E B = (is-var(e.left) & is.ground(e.right)))

(S is in solved form))

In general, if we add verification of the invariants to the proof obligations, the abstraction

function need only be defined on states in which the invariants hold. In this example. the ab-

straction function, A, happens to be defined on any state in which values are of the appropriate

type; nevertheless, the invariants must be shown as part of the safety proof.

In proving the safety property, we start with the argument that initial states map to initial

states. In specification 4-5, an initial state, s, has C = running, and all containers empty

except for E, which contains the user's input. Thus, A(s) is the container holding the input

equation, which is an initial state of specification 4-4. Next, we show that any legal action, a =

(sI, s 2 ), of specification 4-5 maintains the invariant I and meets the safety criterion on actions.

Assuming I(sl), we show I(S2) and show that (A(s1),A(s 2)) is an action of specification 4-

4. We abuse our notation and write A(a) for (A(si),.A(s 2)). Let s, = (E 1,BiS 1,C 1 ) and

1;= (E 2, B2,S 2 , C 2 ).

* If a is a declash action, then there is an equation e in E1 , such that either e is not in

E 2, or e has different head symbols on the two sides, and C 2 = no-match. If e.left is a

variable, then A(a) is a stuttering action, and e is moved from E 1 to to B 2. The invariant

that B contains bindings is maintained since e is a binding. If e.left is not a variable,

the abstract action depends on the head symbols of the right and left-hand sides. If e's

head symbols are equal, then A(a) is a decomposition action, while if the symbols are not

equal, then A(a) is a clash action; in either case the only affected container is E, so I is

maintained.

* If a is a consistency action, then there is an equation, el, in B1 such that either el is not

in B 2, or C2 = no-match. By the invariant on B 1, the left-hand side of e is some variable

x so there are two cases depending on whether or not z occurs in S1. If not, adding el

to S does not invalidate I. If so, then there is another equation e2 in S with z as a
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left-hand side. Both ei and e2 have ground terms on the right. so ground-equal can be

used to test for equality. In either case, A(a) is a consistency action.

The liveness part of the refinement argument is nearly trivial. Both specifications 4-5 and

4-4 have the same stated condition, universal weak fairness. Recall that this condition asserts

that executions can only end in states in which all axioms are disabled. Let s be a state of

specification 4-5 such that all guards of 4-5 are false. It is sufficient to show that for any such s.

all guards of 4-4 are false in A(s). There are two cases to consider on s: either C = no-match.

or E and B are empty. In the former case, A(s) is the state in which E = no-match, and in

the latter E is in solved form- in both cases. all guards of 4-4 are false.

Lemma 4 Specification 4-6 is a refinement of specification 4-5.

Lemma 4 is the final piece of the correctness argument for the transition-axiom specifications.

This proof is more of a conventional refinement argument than the others. because the con-

sistency actions of specification 4-5 are replaced by a sequence of actions of specification 4-6.

In particular. each abstract consistency action corresponds to one concrete (lower-level) con-

sistency action plus a number of declashI actions. In proofs of this type of refinement, where

one action is being replaced by a sequence, the trick is to define an abstraction function that

maps exactly one low-level action in each sequence to the appropriate high-level action, and

all others to stuttering actions [Lam83]. The complication comes from the possibility of in-

terleaving of low-level actions from different high-level actions, representing overlaps in the

execution of high-level actions. It is not alway possible to define an abstraction function on

indiviual states, since the abstract value may depend on the history (or even future [AL88])

of the execution. To make the abstraction function definable, auxiliary information is added

to the specification state to record an execution's history [0G76]. The auxiliary information

does not change the specification: neither the transition axioms nor the liveness property in the

augmented specification depend on auxiliary values.

In specification 4-6, each consistency action of specification 4-5 is replaced by a consistency

action that does not check for term equality, and a sequence of declash.I actions. When

the last declash.I action occurs, the abstract consistency action takes effect. In this case we

to use history variables. With each equation e in the I component of specification 4-6, we
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consistency
((x - t1) E B) & (C - no-match)

if (3 t 2 (X t2) E S) then
(B B-(x -t 1 ) & I=I+ ((tl - t 2 ),(x- tl)))

else (B:= B - (x- t 1)& S S + (z t 1 ))

declash i
(((p - t),(x - s)) E 1) & (C # no-match) =

if (p.head = t.head)
then I:= I +((p[1] - t[1]), (x - s)) + ... + ((p[n] - t[n]). (x - s))

-((p- t),(x S ))
else C := no-match

Figure 4-13: Augmented axioms for specification 4-6.

associate the (binding) equation from B that caused e to be added to I. The elements in

I are now pairs of equations (i,b). where i is an identity and b is the associated binding.

Specification 4-6 is augmented by changing the type of I and replacing axioms consistency

and declashI with the versions shown in Figure 4-13. Note that the augmented values do not

affect allowable executions of the specification. A live execution of the augmented specification

is also a live execution of the unaugmented one if the bindings in I are erased, and the converse

is true because bindings can be added to translate to any live execution of the unaugmented

specification.

As before, we define an abstraction function, A, from specification 4-6 to specification 4-5.

but in this case A is defined on states of the augmented specification in Figure 4-13.

A : (container[equation]) 3 x container[(equation,equation)] x {running, no-match} -

(container [equation] )3 x {running, no-match}

A(E 1 31 , S1, 11 ,C 1 ) - (E 2 , B2 , S2 , C 2 )

where E 2 = E, & $2 = S 1 & C 2 = C 1 &

B 2 = B1 U {b 1 (i,(i,b) E li)}

(In the definition above, the container denoted {b 1 (i, (i, b) E I,)} contains only one instance

of each binding object b. There may be multiple occurrences of the same b in elements of I.)

The safety property for specification 4-6 again requires proving an invariant, ", on the states,

in this case states of the augmented specification. The invariant for specification 4-6 is the same
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as for 4-5. but with additional constraints on equations in 1.

I((E,B.S.I)) - (e E E => is..ground(e.right)) &

(e E B =: (is-var(e.left) & is-ground(e.right))) &

(is.solved-'orm(S)) &

((i, b) E I * (is-ground(i.left) & is-ground(i.right) &

is-var(b.left) & is.ground(b.right)))

In the initial state, I is empty, so the abstraction function maps each of the other state

components to the component of the same name in specification 4-5, and the abstract state

is therefore also an initial one. Moreover, the invariant holds on the initial state. Next, show

that if a = (si,s 2 ) is a legal action of the augmented version of specification 4-6 such that

T(sl) holds, then 1(s2 ) follows and (A(sj),A(s2)) is a legal action of specification 4-5. Let

s= (E 1 ,B 1,S 1 ,Ii, C I) and s2 = (E 2 , B 2 ,S 2 , 12, C 2 ).

* If a is a declashE action, then A(a) is a declash action. Since I is unaffected., I is

obviously maintained.

* If a is a consistency action, then there is an equation el in B1 such that is not in B2 .

By the invariant on Bi, the left-hand side of e is some variable, x, so there are two cases

depending on whether or not x occurs in S 1. If not, then A(a) is a consistency action:

S 2 is still in solved form, so I(s 2) is true. If so (x does occur in S), then there is another

equation e2 in S1 with x as a left-hand side. Both el and e2 have ground terms on the

right, so adding the pair ((el.right e2.right),e2) to 12 does not invalidate 1. In this

case. A(a) is a stuttering action.

" If a is a declash-I action, then let ((p - t), (x - s)) be the element of I, that instantiates

the guard. There are two cases, depending on whether p.head = t.head. If not, then

C 2 = no.match and A(a) is a consistency action with the equation (x - s) instantiating

the guard in specification 4-5. If p.head = t.head, then the child equations of (p - t) are

added to I, each with an occurrence of (x - s). Since p, t, and s are ground, and z is

a variable, I is maintained. The value of A(a) (when p.head = t.head) is a stuttering

action except in the following case: if the arity of the head symbols is zero, so there are
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no children, and there are no other pairs in I having (x - s) as second field. then an

equality check has been completed, so A(a) is a (non-clashing) consistency action.

The liveness property for specification 4-6 obviously implies that of specification 4-5. because

both use universal weak fairness, and every guard of specification 4-5 is also a guard of 4-6.

Correctness of the Procedures

As with most parallel programs, it is difficult to convince oneself that the transition procedures

perform as desired without a careful correctness argument. We have asserted that the proce-

dures in Figure 4-8 are linearizable and non-stopping. From the assumption that lower level

data types (queues, substitutions, accumulators, and memory cells) are linearizable. it follows

that the operations on these appear to be indivisible. Furthermore, the locality property of

linearizability implies that in the entire system, which is a composition of linearizable objects.

the operations take effect in an order consistent with the program order. It is therefore suf-

ficient to consider interleaving of the operations on the individual state components. Part of

the correctness argument in this stage of design is to show linearizability at the level of the

transition procedures.

The proof obligation has been reduced to reasoning about interleavings of operations, so

we show that the implementation is a refinement of its specification. The specification is the

set of transition axiom procedure specifications, subject to the requirements of linearizabilitv.

productivity, and the non-stopping property. The proof is most like that of Lemma 4, since

we are replacing high-level actions with a sequence of low-level ones. The main difference

between correctness arguments for transition procedures and transition-axiom specifications is

that procedures have internal control structures, so it may be necessary to consider the program

counter as part of the lower level state. Note that the correctness condition is on the entire

set of transition procedures, and the proof cannot be done separately for each procedure. The

correctness of each procedure depends on what other things may be going on concurrently.

which in this case is assumed to be other instances of the transition procedures. The proof is

like a linearizability proof of an abstract data type, with the entire program state as the single

abstract object.

As before, the proof depends on maintaining an invariant, I, on the concrete objects. It is

116



declash-E = procedure (E, B: eq.queue, C: ptr[int], 1
E-size, B.size: accum) signals (stutter) 2

% E-size > size(E) 3
% B.size > size(B) 4

if (C = no-match) then signal stutter 5
e: eqn := dequeue(E) % E.size > size(E) + 1 6

except when empty: signal stutter
if is-var(e.left) then

{accum$add(B-size. 1) % Bsize > size(B) + 1 9
accum$add(E-size, - 1) % E-size > size(E) 10
enqueue(B, e)} % B.size > size(B) 11

else if (head(e.left) = head(e.right)) then 12
{accum$add(E-size, arity(e.left) - 1y E.size > size(E) + arity(e.left) 13
for (i := 1) to arity(e.left) 14

enqueue(E, (e.left[i] - e.right[i]))} % E.size > size(E)+arity(e.left)- 1 15
% E-size > size(E) 16

else C := no-match 17
end declash..E 1

Figure 4-14: DeclashE procedure with invariant annotations.

not surprising that the invariant involves the relationship between size objects and the actual

container sizes. (Technically, the accumulators mist be read to extract the value. We omit the

accumSread operations to reduce clutter.)

1((E, B, S, I, C. E-size Bsize, Isize)) - E.size > size(E) &

B..size > size(B) &

I.size > size(I)

Proving this invariant is straightforward by examining the actions within each procedure.

Consider the declashE procedures as an example. Roughly, any insertions to a container are

preceded by an addition to the corresponding accumulator, while removals are followed by a

subtraction. The code in Figure 4-14 contains annotations to show how operations within the

procedure affect the relevant part of the invaxiant. Each comment is a predicate that holds

after the statement on the same line has been executed. At the beginning of the procedure. the

invariant is assumed, and any path through the code results in the invariant being maintained.

(The predicate following the dequeue assumes an equation has been removed. If, instead.

the signal is raised, then dequeue raises the stutter signal and the values in the invariant are
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unchanged.) Similar arguments can be made for each of the other procedures.

Because the accumulator objects are upper bounds on the sizes of the respective containers.

a zero accumulator value implies an empty container. When all three size objects are zero, then

the three corresponding containers are empty, the transition axioms guards are all false. and a

matching substitution has been computed. Thus, when the termination procedure observes a

state in which all three size objects are zero, it should return true. However, correctness of the

termination procedure does not follow from this fact alone, because the expression

((accum$read(Esize) = 0) & (accumSread(B-size) = 0) & (accum$read(I.size) = 0))

is not a single action-each of the read operations is a separate action. When the expression is

executed, three different states may be observed, so it is not obvious that when the expression

evaluates to true, there is a single state in which all three accumulators are zero. The correctness

of termination depends on the order in which readsare done; it also depends on a global property

of the system, that equations move in one direction through the containers. We assume that

the programming language mandates left-to-right evaluation, which is true in C.

In any execution of the transition procedures, equations move from E to B and indirectly.

to I, but no equation ever moves in the reverse direction, and no equation in B or I ever causes

a new equation to be added to one of the preceding containers. Therefore, once E.size becomes

zero. it will remain so. A predicate that remains true, once it becomes true, is said to be stable.

Neither of the predicates B-size = 0 or I-size = 0 is stable, but the following three predicates

are stable:

" S1(s) : (s.E-size = 0)

" S2(s) : ((s.Esize = 0) & (s.B..size = 0)), and

" S3 (s) ((s.E-size = 0) & (s.B..size = 0) & (s.I.size = 0)).

(Each property is written as a predicate on some state s, and individual state components are

accessed using the dot notation from records.) The stability of these implies that, if the test

expression in termination evaluates to true, then all three accumulators are zero in the last

state of the evaluation.
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Stability of a predicate P is a safety property; it can be checked by showing that for any

action (sI,s 2 ), if P is true in sl, then P is also true in s2. One often makes use of a previously

proven invariant to show a stability property.

In proving the stability of S 1, the only interesting procedure is declashE, since none of

the others modify E-size. (We refer to line numbers in the annotated version of Figure 4-14.)

For each of the lower-level actions (s,s 2) in declash.E, assume Sl(sl) and show Sl(s 2 ). From

SI(si) and Z(sl), it follows that E is empty in sl. There are only two actions that alter the

value E-size, line 10 and line 13. In both cases, "(s2) implies that in sl, E.size > size(E)+ 1.

so Esize > 0, and by contradiction, E.size = 0 is not invalidated. We do not provide proofs

of S2 and S3, which require the same type of reasoning.

As in the proof of Lemma 4, a proof of linearizability involes picking a single lower level

action in any procedure that causes the abstract action. In Figures 4-15 and 4-16. the transition

procedures are given with history variables added to show the values of the abstraction function

at each point in the execution. The angle brackets are used to denote atomic operations, i.e..

they group operations on history variables with some real operation in the program.

Non-stopping is obvious, because there is no recursion, and every loop is bounded by the

arity of some operation, and there are no critical regions (at this level of abstraction).

It is interesting to note that the procedures are still correct if the operations on the size

objects are done after the operations on the corresponding containers, but the proof becomes

much more complicated. In particular, I is no longer an invariant, since child equations are

added (to either E or I) before their size objects are incremented.

4.4 Discussion

In this section we summarize the main advantages of the transition-based approach, discuss its

limitations and possible extensions, and then survey some of the related work.

4.4.1 Summary

One of our goals in developing the transition-based approach was to separate concerns of per-

formance from those of correctness. It is instructive to see how the two concerns are addressed
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declashE = procedure (E. B: eq-queue, C: ptr[int],
E-siz. -, B-size: accum) signals (stutter)

if (C = no-match) then
signal stutter El

e: eqn := dequeue(E)
except when empty: signal stutter

if is.var(e.left) then
{accurnSadd(B-size, 1)
(accum$add(E-size, -1) E2

E.b, := Eab, - (p - t)
Bab,= Bb, + (p t))
enqueue(B. e)}

else if (head(e.left) = head(e.right)) then
{(accumSadd(E-size, arity(e.left) - 1) E3

Eab, s= Eabs + (p[1 - t[1- ) + - + (p[n] - tin]) - (p t))
for (i := 0) to arity(e.left) enqueue(E. (eleft[i] - e.right[i]))}

else (C := no-match E4

Cab, := no-match)
end declashE

consistency = procedure (B, 1: eq-queue, S: substitution, C: ptr[int],
B.size, I-size: accum) signals (stutter)

if (C = no-match) then
signal stutter C1

e: eqn := dequeue(B)
except when empty: signal stutter

assign(S, e.left. e.right)
except when already bound(t):

{accum$add(Isize, 1)
(accum$add(B-size, - 1) C2

Bab, := Bbs, - (p t)

I.b, := Iab, + (t- t 2))
enqueue(I, (e.right - t))
ret urn}

(accumSadd(B.size, - 1) C3

Bab := Babs - (P
S~b. :=Sab, + (X "--1))

end consistency

Figure 4-15: Annotated transition procedures-declashE and consistency
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declashI = procedure (I: eq.queue, C: ptr[int], I-size: accum) signals (stutter)

if (C = no-match) then
signal stutter I1
e: eqn := dequeue(I)

except when empty: signal stutter
if (head(e.left) = head(e.right)) then

{(accumSadd(Isize. arity(e.left) - 1) 12

labs := Iabs + (p[1] - t[1]) + ... + (pin] * t[n])- (p - t))
for (i := 0) to arity(e.left) enqueue(I, (e.left[i] - e.right[i]))}

else (C := no-match 13
Ca6, := no-match)

end declashI

termination = procedure (C: ptr[int], E.size, P -:-e, I-size: accum) returns (bool)
if (C = no-match) then

return(true) T1
if ((accum$read(E.si7e) = 0) & T2

(accum$read(P size) = 0) & T3
(accum$read(Isize) = 0)) T4
then return(true)

else return(false)
end termination

Figure 4-16: Annotated transition procedures-declashI and termination
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in various steps of the approach. The major correctness considerations are:

" Each of the transition-axiom specifications must solve the desired problem. This is proved

by a refinement argument between specifications. The intent is to capture the complexity

of the program-level parallel algorithm in these specifications, which are nondeterministic

but still sequential.

" The transition axiom procedures must be effectively linearizable, assuming that the lower

level abstractions are linearizable. If there is an interference relation on the lower level

abstractions, it must be respected.

" The lower level abstractions must be linearizable, perhaps modulo an interference relation.

This can be shown independently for each abstraction.

* The scheduler must meet the liveness property of the refined transition-axiom specifica-

tion. This argument is often trivial, because the liveness property is weak.

Performance issues arise in a number of places as well.

" The transition-axiom specification used for the implementation must have a certain form

so that it can lead to an efficient implementation.

" The transition-axiom procedures must be highly concurrent. This can be partially tested

by running subsets of the procedures on carefully chosen data.

" The lower level objects must be highly concurrent, to the extent that they limit perfor-

mance of the transition-axiom procedures.

" The scheduler must make effective use of the available processors. The ability to do

performance tuning late in the program development process helps the programmer meet

this goal.

A general conclusion is that thinking about nondeterministic transitions during program

design is a good way to uncover program level parallelism. While transition axioms have been

used to reason about parallel and distributed programs [CM88, LT87, Lam89], we know of no

other work that defines a link between the transition axiom specification and a parallel program

written in a conventional language.

122



4.4.2 Extensions

There are two aspects of the transition-based approach that limit its use. First, all parallelism

is at a single level of abstraction; although there is concurrency between the transition axioms.

each one is sequential. For small multiprocessors this is not only reasonable, but probably

advantageous, because it significantly simplifies the scheduling problem. This simplification

makes it easier to keep all processors busy, without the cost of supporting more threads than

processors.

For larger machines, it would negatively affect modularity to require that all parallelism

be at a single level of abstraction. It will be desirable to nest parallel procedures within each

other. Extending the transition-based approach to meet these demands does not affect the

transition axioms or the transition procedure. but it does affect the scheduler. To keep the

same distinction between the transitions, which define legal actions, and the scheduler of those

actions. a multi-level scheduler would be needed. The challenge would be to find a small but

general set of mechanism for building multi-level schedulers, so that schedulers can still make

effective use of processors.

Both of the examples in this thesis are programs that run in a batch style. Using the

approach for reactive or interactive programs is possible, and if we assume the environment (or

user) is infinitely fast at responding, then the same scheduling and synchronization strategies

should work. Realistically, though, a program that interacts with the environment may be

slowed by the rate of user input or other environmental responses. This does not affect the

correctness of the program, but will affect performance.

4.4.3 Related Models and Methods

Many approaches to writing parallel programs have been proposed. Among those proposed for

asynchronous (MIMD) machines, we divide the approaches according to whether or not they

allow the full power of a conventional imperative programming style. An orthogonal distinction

can be made between implicit and explicit parallelism.

For asynchronous machines, there are number of proposed programming paradigms that

restrict the programming model. The most restricted is a pure functional language, in which

no side-effects are allowed, so the complexity of nondeterminism from parallel evaluation is
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avoided. However, in a functional language it is difficult to write programs that involve state

changes, since this involves copying all or part of the state. For some programs. object mutations

are mainly instantiations, i.e., an object may be created in some partially constructed form.

and parallel threads fill in the missing pieces. This form of mutation can be handled by futures

[HalS5], I- -tructures [ANP87]. and logical variables in logic programs [Rin89]. Since objects

cannot be mutated after instantiation, the only kind of race condition arises from whether or

not an object has been computed. Special hardware or software checks can prevent threads

from observing uninstantiated objects.

In any of these restricted paradigms, the possibility for implicit parallelism is greater than

with imperative programs, because there is no chance of interference between expressions.

In symbolic programs, however, where large complex objects are involved, the overhead of

performing mutations by copying seems prohibitive, and there is no evidence to suggest that

the advantage of parallelism can overcome this overhead. Although functional and related

paradigms eliminate the need for explicit synchronization. there is still synchronization being

done by the system. Consider, for example, the imperative program, Pi(x); P2 (x); y := x. where

each of P1 and P2 mutate the object x. In a functional style, the procedures would be written

to produce a new version of x, and the program would be written, y = P2 (P1 (x)). In theory.

the evaluation of P2 may begin while P1 is computing, but in practice it may have to wait for

P, to finish computing its result.

The FX programming language is a hybrid of the functional and imperative styles [Luc87a].

The type system distinguishes between purely functional expressions and mutating ones. so

the compiler can automatically parallelize certain pieces of a program, while allowing the pro-

grammer the expressive power of assignment when it is necessary. Effect declarations in FX

are analogous to our interference specifications, but in FX they are integrated into the type

system, and must be verified by the compiler. This leads to a conservative approximation of

correctness that is quite powerful in the absence of explicit synchronization, but does not reflect

the abstract notion of correctness in general.

Implicit parallelism is also being used on imperative programs, although the compilation

techniques must be more sophisticated than for more restricted programming models. The

most significant effort has been in the area of parallclizing Fortran programs, where signifi-
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cant progress has occurred in developing algorithms to detect parallelism for both numerical

[ABC+87. PGH+bS] and symbolic [LH88] programs. These techniques are most promising for

numerical programs, most of the techniques focus on parallelizing loops. The payoffs for these

compilation techniques on complete application programs running on existing machines are not

yet known. All of the implicit techniques are conservative, and they typically do not generate

the kind of parallelism in which concurrent tasks mutate data concurrently.

Message-passing paradigms, as exemplified by [CD90, Ame87], are popular for distributed

memory machines. In the simplest of these, a program is organized around objects. and commu-

nication is done by sending messages to objects. Computation at a single object is sequential.

so the programmer is left with the options of refraining from abstraction, i.e., not building

any large objects, or of producing programs with little parallelism. In [CD90, objects can be
grouped together into a multi-object abstraction. Our approach could be used with a message-

passing language. although some of the low-level implementations would be different.

The Linda programming language [CG89] gives a uniform treatment to scheduling issues

and synchronization, but includes a global space of dynamically created objects as part of the

programming model. The scheduling strategies we use in the transition-based approach use a

similar idea, i.e.. tasks are placed in a shared heap. However, we do not mix synchronization into

the same structure. since we separate synchronization from scheduling, viewing synchronization

as a low level concern and scheduling as a high level one.

All of these approaches attempt to simplify parallel programming without giving up too

much expressive power, but do not directly address issues of abstraction and correctness. Fur-

thermore. none of these approaches offers a design method analogous to the transition-based

approach. They present programming models, sometimes with examples to demonstrate ex-

pressive power, but do not give the programmer general guidance in the design process.
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Chapter 5

Parallel Completion

In this chapter we describe a parallel solution to the completion problem for term rewriting

systems. We present this example for two reasons. First, it demonstrates the utility of our

transition-based approach. Second. completion is an important problem in term rewriting

systems research, and this is the first parallel solution, either designed or implemented, for the

problem.

The following properties of completion make it a good test case for the transition-based

approach.

* There is no obviously efficient parallel solution. The first parallel solution we implemented

was a straightforward parallelization of a well-known sequential solution, the Knuth-

Bendix procedure. Not only is the performance of that implementation poor, but some

of the performance problems are attributable to its similarity to the sequential solution.

We believe these performance problems will appear in other applications as well, and that

they are fundamental to the approach of developing parallel programs from sequential

ones. We discuss this point further in Section 5.1.

* In principle, the basic steps in completion do not have to be performed in a particular

order, and in many cases the steps are independent, so the problem does not appear to

be inherently sequential. Moreover. unlike matching, applications of completion may run

for minutes or even hours on realistic input, so there is enough computation to support

large scale parallelism.
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* Even in the sequential solutions, the order in which steps are taken plays a crucial role

in performance. Some execution orders that are allowed in principle will generate enough

intermediate values to exceed the memory capacity of most computers and the patience

of most users. Thus. while completion has enough independent computation to support

parallelism, it is not trivially parallelizable.

* The parallel solution produced using the transition-based approach is large: it is about

ten thousand source code lines, has nine transition procedures, and thirteen different data

types. of which five are concurrent. This makes modularity a real concern.

* Completion is typical of symbolic applications. It has large data structures that are, by

necessity, dynamically allocated. It exhibits performance instability in the extreme. In

the best case, an input is already in its final form. i.e., it is complete: the completion

procedure simply tests for this property and returns the input. In the worst case, there is

no finite complete solution, so the procedure generates an infinite sequence of successively

closer approximations to the infinite solution.

Completion procedures have been used for doing data type induction [Mus80], interpreting

equational logic programs [GM861, proving theorems in first order theories [HD831, debugging

specifications [GGH90], proving equivalence of algebras [Mar86], and automatically generating

equational unification algorithms [Hul8]. The original completion procedure was discovered by

Knuth and Bendix [KB70], and has since been studied, modified, and extended. See [Buc85].

for a historical survey of completion procedures, with more than 200 references that include

algorithms, applications, and implementations.

A careful statement of the completion problem requires term rewriting theory that is un-

related to the problems of parallel program development. We therefore separate the details

of completion from the features of our parallel implementation. In Section 5.1 we describe a

sequential completion procedure in the abstract, and discuss some of the properties that make

it a challenging procedure to parallelize. In section 5.2 we define the completion problem.

and in Section 5.3 we present a transition-axiom specification for completion that is adapted

from the presentation of [BDH86). In Section 5.4 contains a directly implementable transition-

axiom specification, from which the implementation is built, and in Section 5.5 we present some
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complete = procedure (R : set of rewrite rules)
do forever

inter- normalize:
rewrite all rules (left and right sides) using all other rules

until nothing can be rewritten

delete trivial rules

% compute critical pairs:
pick two rules and add their critical pairs to the rules

end complete

Figure 5-1: Outline of a sequential completion procedure

performance results.

5.1 Opportunities for Parallelism

The completion process is rich with both opportunities and pitfalls for parallelism. Consider

the outline of a sequential completion procedure given in Figure 5-1. The procedure manipulates

a set of rewrite rules, each of which is a pair of terms as defined in Chapter 4.1 It has two

alternating phases: inter-normalization rewrites and eliminates rules, and critical pairing adds

new rules.

5.1.1 Program Level Parallelism

There are a number of ways in which parallelism can be exploited at this level of abstraction.

and we will use all of these in our implementation.

1. Inter-normalize in parallel. Each task could take one rule, and sequentially normalize it

with respect to the others. If a rule rewrites to a trivial rule (right and left sides equal).

then the rule was redundant and can be deleted. In parallel, however, care must be taken

to avoid eliminating the last instance of a redundant rule. For example, a rule can always

be used to rewrite itself to a trivial rule, so the algorithm must prevent such self-rewriting.

The problem is more complicated, however, because rules that are equivalent up to their

'In this section, we gloss over many details of completion, and in particular, no distinction is made between
equations and rewrite rules.
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variable names can be used to rewrite each other to trivial rules. If rules r, and r 2 are

variable renamings of each other, then. in parallel, r, can be used to trivialize r 2 while r 2

is being used to trivialize r1 .2

2. Compute critical pairs in parallel. The critical pair calculation compares the left-hand

side of one rule with a subterm of another rule. Each task could work on a different

subterm in parallel. In addition, although the outline in Figure 5-1 shows the critical

pairing phase acting on a single pair of rules, multiple critical pair computations can be

done at once.

3. Do the two phases, normalization and critical pairing, in parallel. In this case the pro-

cedure would be a two stage pipeline, with the set of rules as data, and a feedback loop

from the second stage back to the first.

Before developing a solution using the transition-based approach, we considered paralleliz-

ing the sequential completion procedure using these three strategies. In our first attempt to

parallelize completion, we used the third strategy, with the intent of incorporating the first two

strategies later to balance the pipeline. Two lessons came out of that implementation effort, and

lead us to abandon the approach of developing parallel programs from conventional sequential

ones.

The first lesson, which is specific to completion. is that the amount of time spent in normal-

ization far exceeds the time spent in critical pairing. The basic fact was known from sequential

implementations, but the degree of difference-a factor of 20 was not unusual-was a surprise.

The implication is that the potential speedup of the pipeline was only 5%. On the machine we

were using. a six processor Firefly, dedicating one sixth of its processing power to the critical

pairing stage is not a good use of resources.

The second lesson is of more general interest. Even if the target machine has a large number

of processors, performance instability of the two tasks makes it difficult to balance the pipeline.

The ratio of work (between the two stages) varies significantly across iterations of the outer

loop. Figure 5-2 shows the relative time for the two stages of the pipeline, given typical input.

21n parallelizing Buchberger's algorithm for computing Grbbner bases, which is similar to the completion
problem. Ponder notes the same phenomenon [Pon88].
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norm (ms): 0 369 0 160 139 21 481 2781 170 922 1841 2897 4768
crit (ms): 28 0 119 32 15 47 151 35 148 194 117 180 67

norm/crit: 0 x 0 5 9 0 3 79 3 9 15 16 71

Figure 5-2. fime spent in iterations of pipelined completion

Each column is a separate iteration, and the first two rows are the executions times for two

two stages, rounded to the nearest millisecond (sometimes to zero). The third row shows the

ratio of the two times (norm/crit). Note only does the ratio varies significantly, but the more

expensive instances of normalization trail the emore expensive instances of critical pairing by

one iteration. The explanation for this shadowing effect is that a more expensive instance of

critical pairing generates many new rules, which produces a lot of work for the next iteration

of normalization.

There are a number of way to address the specific performance problems of completion.

For example, the critical pairing stage could work on more than one pair of rules to make that

stage relatively more expensive, or perhaps inter-normalization could be optimized to make it

relatively less expensive. In addition, if the stages were themselves parallelized, the shadowing

effect could be handlet' ,4ocating processor resources dynamically, within each iteration.

All of these propo, J- .void the real problem: between the two stages is a synchronization

point, when intur-normalization gets new rules from critical pairing, and critical pairing gets

a normalizpd version of the rules from inter-normalization. This synchronization point is an

artifact of having developed a parallel program that "looks like" the sequential one. Notice

that if the first two strategies for parallelism had been used without the third, there would be

two synchronization points per iteration, one after inter-normalization and one after critical

pairing.

Inheriting unnecessary synchronization points is a general problem that is attributable to

parallelizing sequential code, as opposed to writing parallel programs. In conventional sequential

programming languages, the programmer is asked to give a total order on all statements, even

though some partial order might be sufficient.

Dissatisfaction with the result of parallelizing the sequential completion procedure motivated

the development of the transition-based approach described in Chapter 4. In this chapter we

demonstrate its application to the completion problem. By describing transition axioms at the
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appropriate level of abstraction, the approach allows parallelism both between critical pairing

and inter-normalization and within them. Thus. all three of the parallelism suggestions outlined

earlier are used in our implementation. The challenge in our implementation is to allow this

level of concurrency without loosing track of what has been computed and what needs to be

computed, i.e.. without missing rewrite steps or critical pair calculations and without performing

unnecessary work. To meet this challenge the parallel tasks must communicate frequently and

inexpensively, which they do by reading and writing shared variables.

5.1.2 Lower Level Parallelism

The parallelism discussed in the previous section was all at the program level, but there is also

parallelism to be found at lower levels of abstraction within completion. For example, rewriting

a single term requires that all rules be applied to every subterm of the term. Parallel rewriting

has been studied by others, including Dershowitz and Lindenstrauss [DL90], who presented an

parallel implementation and then discuss some of the behavioral differences between parallel

and sequential rewriting. In addition, parallel matching, which is used within rewriting, and

parallel unification, which is used within critical pairing, have both been studied theoretically.

The unification problem, has a linear time sequential algorithm, and is known to be P-Space

complete, so it is unlikely to have a faster than polynomial time parallel algorithm [DKM84].

The matching problem has a logarithmic time algorithm on a polynomial number of processors

[RR87, DKS88]. but cannot be done in onstant time algorithm [VR90]. All of these results were

shown using the PRAM model, which has limited applicability to real machines, because the

model is synchronous, ignores communication overhead, and only bounds processor utilization

within a polynomial of the input.

We chose to parallelize only at the level shown in Figure 5-1, rather than parallelizing within

matching or unification. Given the performance results of Chapter 4, where only unusually

large terms shows speedup from parallelism in matching, it is not appropriate to parallelize the

matching problems that occur within completion. Similarly, the unification problems that occur

within completion will typically not be large enough to warrant parallelization. The relative

costs associated with parallelizing within rewriting (of a complete term) and parallelizing within

critical pairing (of a single pair of rules) are less clear, but we did not parallelize either of those
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operations because we found sufficient parallelism at a higher level.

5.2 Problem Statement

The definitions presented here are consistent with Bachmair, Dershowitz, and Hsiang [BDHS61.

We assume a familiarity with the notions of terms, equations, and substitutions, as defined in

Chapter 4, and we also continue the convention that, with possible subscripts. x is a variable.

a and b are constants. f and g are arbitrary function symbols, and s and t are terms.

A term rewriting system R is a set of ordered equations called rewrite rules. written s - t.

A rewriting system R imposes a rewriting relation -R on terms given by S -R t if and only if:

* there is a rule I - r E R and a matching substitution a such that s contains al as a

subterm. and

o t is formed by replacing the occurrence of al by ar.

For example, a system containing the rule f(x) - g(b) rewrites the term g(f(a)) to g(g(b)). Let

-R+- -R*, and -'R* be, respectively, the transitive closure, the reflexive transitive closure,

and the reflexive symmetric transitive closure of -- Since 'R* is symmetric, it is well-defined

even when the set of rules R is replaced by a set of (unordered) equations E. The relation -E*

is exactly the relation defined by the equational theory presented by E, also denoted E*. I.e..

an equation (s - t) is true in E* if and only if s -E*t. 3

A rewriting system R is said to be confluent if and only if r -- R*s and r -R*t implies there

exists a term u such that s -R*u and t -R*u. If -R+ contains no infinite chains, then R

is said to be noetherian.4 If R is both confluent and noetherian, it is said to be convergent. If

R is convergent, then for any term t there exists a unique term s such that t -R*s and s is

irreducible (i.e., cannot be rewritten); in this case s is called the normal form of t in R, and is

denoted t JR.

Convergence implies that s -R *t if and only if s IR - t IR, so the equational theory

presented by a finite convergent R, with rules in R viewed as equations, can be decided by

3Recall from Chapter 4.3 that (s "= t) denotes an equation.
4Another word for "noetherian" is "terminating." We use "noetherian" for the property on term rewriting

systems, and "terminating" for the property on programs that manipulate term rewriting systems.
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computing normal forms. When term rewriting techniques ae applied to theorem proving

[HD83]. knowledge representation [Sch88], and logic programming [GM86]. the property of

convergence is often essental. In some applications, convergence is established by adding new

rules to the system in a completion process. while in other applications convcrgence is a property

that is tested for a fixed set of rules. Although the process of completion is not guaranteed t-)

terminate, it is sometimes useful to perform completion for a fixed amount of time to compute

an approximation to the infinite answer [GGH90]. All of these applications of term rewriting

systems solve one of the following related problems.

Definition. Given a term rewriting system R, the convergence dec;.qion problem is to determine

whether or not R is convergent.

Definition. Given a set of equations E. the basic completion problem is to find a convergent

rewriting system R suchi that -R* and -E* are equivalent.

For some inputs E. no finite R exists to solve basic completion, so we generalize the problem

as follows.

Definition. Given a set of equations E, the completion problem is to produce a (possibly

infinite) sequence of rewriting systems R 0 ,R 1,... such that each Ri is noetherian. -R, * is

contained in -E*. and for any equation (s - t) in E* there is an i such that s lR,= t JRJ for

al j > i.

If basic completion is solved for a given E, the resulting rewriting system can be used to

decide the equational theory E*. Similarly, if completion is solved, the resulting sequence of

systems can be used as a semi-decision procedure for E*. Basic completion is a special case of

completion, and the convergence decision problem is solved as part of completion. Completion

problems can be further generalized to allow new function symbols in the rewriting systems:

for example, some extension of completion allow function symbols in R that are not in E, and

require only that 4-R* be a conservative extension of -E*. Other variations on the completion

includes narrowing [Hul80] and completion modulo equations [Hue8O, PS81]. Although these

problems fall in the class addressed by our approach, we consider only traditional completion

in this thesis.
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All these variations on completion are unsolvable, and in fact the problem of determining

whether a set of rules is noetherian is undecidable. Certain equations, like the commutative

axiom cannot be ordered into a rewrite rule if we desire a noetherian system. The most common

method for proving that a system is noetherian is to use a reduction ordering on terms, i.e.. a

monotonic well-founded ordering that is stable under substitution [Der82]. If for every rule in

the system, the left side is greater than the right side by a reduction ordering, then the system

is noetherian. We assume a reduction ordering is given as input to a completion problem, and

permit a procedure that halts with failure if the ordering is not powerful enough to orient some

equations that arise.

A completion procedure is specified in the following set of correctness conditions on the

sequence of observed states.

Definition. A completion procedure takes a set of equations E and a reduction ordering >. It

produces a possibly infinite sequence R = (Ro, R1 , ...) of rewriting systems such that:

1. For all Ri in R, and all I - r in Ri, I > r. (Each R, is provably noetherian by the given

ordering.)

2. For all Ri in R, -R,* is contained in -E*. (Each R, is consistent with E.)

3. If there exists some R in R such that Ri is a solution to the basic completion problem.

then the procedure halts with success, and the last element in R is a solution to basic

complete. (The procedure terminates if possible.)

4. If no Ri in R solves basic completion, then either:

(a) The procedure halts with failure.

(b) R is infinite, and for any equation s .- E*t there is some Ri such that for all R,,j _> i,

S IR, = t IR,. (R is a solution to general completion.)

The first two conditions are safety properties, and the last two are liveness properties. One

interesting aspect of these procedures is that they may run forever, but must continue to make

progress towards finding a solution. This is ensured by condition (4b), which informally says

that anything true in E must eventually be provable by rewriting. By condition (3), a procedure

135



is required to terminate if a solution to basic completion has been produced, the test for which

involves deciding convergence. Tie problem here is simpler, however, because the test for a

noetherian system is (conservatively) approximated by the given reduction ordering. As we will

see, once R is known to be noetherian the test for confluence can easily be decided.

Unfortunately, by condition (4a), the specification admits trivial procedures that simply

halt with failure on all inputs. Completion procedures typically differ on the set of inputs on

which they fail, and the ability of a procedure to resist failure is one of the qualities by which

procedures are ccnipared. Completion procedures can be made failure resistant by allowing

the reduction ordering to be modified in certain restricted ways during the completion process

[DF85]. Completion procedures can be made unfailing by leaving some equations unordered

and restricting the domain of terms to which rules can be applied [BDII861. Because these

generalizations complicate the completion process, we restrict our attention to completion pro-

cedures in which a fixed ordering (>) is given. Failure conditions will be discussed again after

we describe the process through which new equations arise during completion.

5.3 A Transition-Axiom Specification

The transition axiom specification presented in this section is adapted from the description

of standard completion by Bachmair, Dershowitz and Hsiang [BDH86]. It reformulates the

original completion procedure of Knuth and Bendix [KB70] as a set of non-deterministically

applied transition axioms.

The transition-axiom specification for completion relies on the following definitions. An

occurrence is a location in a term and is denoted by a finite sequence of integers. The subterm

of t at occurrence o, written tjo, is defined recursively: if o is the empty sequence, c, then

tjo = t, and if o = (i,o1 ,...o,) and t = f(t, . t,), then tlo = tI[(oj,...,o,).

Let s and t be terms. If there exists a substitution a su-h that as = at, then s and t are

unifiable, and a is their unifier. If a is a unifier of s and t, and for all other unifiers a', there

exists a substitution r such that a = a o r, then a is a most general unifier of s and t. A

substitution r is a renaming if for all variables v in the domain of r, r(v) is a variable. (Most

general unifiers are unique up to variable renaming, i.e., up to composition with renaming

substitutions. Furthermore, if any unifier exists for two terms, then a most general unifier
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exists.)

Let r, be the rewrite rule s - t and r2 be another rule 1 - r, and assume rl and r 2 have

no variables in common. Then (s' - t') is a critical pair of r, and r2 if and only if:

" I is unifiable with a non-variable subterm of s at some occurrence o, with a most general

unifier a, i.e., al = a(slo).

* s' is formed from as by replacing (as)lo by ar, and t' is at.

Consider the following example. Let r, be the rule g(f(xI, y1 )) - f(g(x1 ),g(y)), and let r2 be

the rule f(f(x2 ,y 2 ),z 2 ) - f(X 2 ,f(y 2,z 2)). In this case r, and r 2 have a critical pair defined as

follows:

* Let o be (1), and a be the substitution {f(X2,y2)/l,z2/yl}. Then a is the most general

unifier of g(f(xj, yl))Io = f(z1 , yj) and f(f(x2, y 2),z 2).

# Apply a to rl, yielding g(f(f(X2 , y 2),z 2)) - f(g(f(x 2,y 2)),g(z 2 )). Replace the left-hand

side of this rule with f(x 2 , f(y 2 , z 2 )) at occurrence o and turn the result into an equation.

This produces the critical pair (g(f(x2, f(Y 2, z 2))) f(g( f(X2, y2)),g(z 2 ))).

Given a pair of rules rl,r 2, let crit(rl,r2 ) denote the set of critical pairs of r, and r 2, with

r 2's variables renamed if necessary, to avoid conflicting with the variables of rl. Given a set of

rewrite rules, R, let crit-all(R) denote the set of all critical pairs of rules in R, i.e.. the union

of all sets crit(rl, r 2) for rl,r 2 in R. Note that r, and r2 may be the same rule, so crit-all(R)

contains crit(r, r), for all r in R. Both crit and crit-all are unique up to variable renaming.

In addition to critical pair computations, a completion procedure performs inter-normaliza-

tion during which rules are rewritten by each other and equations are rewritten by rules. When

rewriting one rule by another, there is a technical problem when the two rules have left-hand

sides that are renamings of each other, because either rule can be used to rewrite the other's

left-hand side. The details of the problem are not important in this discussion, but the solution

will affect our presentation. We associate an age with each rewrite rule and define the following

predicate that will be used to restricted rewriting of the left-hand side of rules: if r, and r 2 are

rewrite rules having left-hand sides that are renamings of each other, and r, is older than r 2.

then r, and r2 satisfy an age restriction, which we denote by the predicate age -restrict(r1 , r2).
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Using the age of rules to solve the technical problem is mentioned in the original inference rule

formulation [BDH86], and the validity of this solution was confirmed by Dershowitz [Der90].

Associating an age with each rule will also solve the problem in the parallel implementation

that was mentioned in Section 5.1 as the problem rewriting two rules to triviality by using each

other: we will use rule age to keep one of the rewritings from taking place.

A transition-axiom specification for a completion procedure is given in Figure 5-3. It is

similar to the inference rule description given in [BDH86]. The state consists of a container of

equations E and a container of rewrite rules R, Initially, E holds the user's input and R is

empty. (By convention, R and E are sets, since no duplicate rules or equations are inserted into

either.) The notation (s-t), used in a number of the transition axioms, refers to the equation

(s - t) in either orientation. The value of the reduction ordering on terms is implicit in the

use of >, and there is an invariant that all rewrite rules are ordered with respect to >. i.e..

I - r implies I > r. We discuss each of the axioms in Figure 5-3 by informally describing the

actions they defined. The discussion of axioms is followed by a definition the liveness property

in Figure 5-3.

" simplify: Apply one rewrite step to either side of an equation.

" delete: Delete an equation with identical right and left hand sides. i.e., a trivial equation.

from E.

" orient: Turn an equation into a rewrite rule using the input ordering (>) on the two

terms.

" right-reduce: Apply one rewrite step to the right hand side of some rule. A rule s - t is

right reduced by applying a rule r (possibly the same rule) to t, giving t'. An important

property of reduction orderings is the following: if s - t and r are both ordered with

respect to some reduction ordering >. then s -. t' is also ordered with respect to >.

" left-reduce: Apply one rewrite step to the left hand side of a rule. In this case, the rule

may become trivial, or it may have to be oriented in the reverse direction. Therefore, the

rewritten rule is turned into an equation.

The guard for left-reduce asserts that there are two rules in R, s -- t and r, and that
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State Components
E con tainer[equation] + ordering-failure
R: container[rule] + ordering-failure

Initially
E = user input

Transition Axioms

simplify
(s t) E E & (t -R t') =

E E - (s= at) + (s t')
delete

(s - s) E E =
E := E - (s - s)

orient
(s"t) E E & s > t =

E := E - (s-t) & R := R + (s- t)

right-reduce
(s - t) E R & (t -R t') *

R := R - (s - t) + (s -- t')

left.reduce
(3 - t) E R & r E R & (8 - s') & (-age._restrict(s -- t, r))

R := R - (s - t) & E := E + (s'- t)

deduce
(s - t) E crit-all(R) *

E := E + (s- t)

fail
(a-t) E E & (s t) & (aS R= s) & (t IR= t) & (8 t) & (t a)

E, R := ordering-failure

Liveness

CP fairness and CP termination

Figure 5-3: Transition-Axiom Specification for Standard Completion
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s can be rewritten by r. The requirement -'age.restrict(s -. t,r) prevents a rule from

being used to rewrite its own left-hand side, and ensures that if one rule can be used to

rewrite another, the second cannot be used to rewrite the first.

" deduce: Add one critical pair of R to E.

" fail: If there is a non-trivial equation in E that is in normal form with respect to R. and it

cannot be ordered in either direction by >, then both E and R are set to ordering-failure.

Such a state is called a failed state. No guards are true in a failed state.

Any procedure that performs a fair interleaving of these actions will solve the completion

problem, although the required notion of fairness is rather technical:

Definition. An execution (Eo, Ro), (El, R1 ),... is CP fair if and only if there exists some failed

(E2. Rj), which is necessarily the last state, or, for all indices i in the execution:

1. (nf>E) = 0, and

2. if e E nf>icrit-all(Rj), then there exist some k and e' such that e' E Ek and e' is a

renaming of e.

The first condition for CP fairness requires that any equation appearing in E is eventually or-

dered. simplified, or deleted. The second condition requires that every critical pair is eventually

added to E. CP fair executions may be either finite, producing a convergent or failed system.

or infinite, producing successive approximations to an infinite system.

To ensure termination we need a second liveness property.

Definition. An execution (Eo, Ro), (E1 , R1 ),... is CP terminating if either it is finite or none

of the R, solve basic completion for Eo.

A completion procedure may fail if there is a non-trivial equation e in E that can be neither

ordered or rewritten, since no fair execution can leave e in E forever.

5.4 A Refined Transition-Axiom Specification

The transition-axiom specification given in Figure 5-3 is not appropriate for direct implementa-

tion. Although we do not give a series of refined specifications as we did for matching, the same

140



issues must be addressed. In Section 4.3.2 we described three aspects of a transition-axiom

specification that made it directly implementable: a weak liveness property, simple transition

axioms (particularly the guards), and balanced granularity of the transition axioms.

Before presenting the directly implementable specification for completion, which is given in

Figures 5-4 through 5-7. we summarize some of the ways in which the original specification is

refined.

5.4.1 Weakening the Liveness Property

A significant portion of the design for parallel completion involves encoding the liveness property

into state information, so that it is ensured by the safety property defined by the transition

axioms. In the matching example, the liveness property in the original specification was encoded

by separating the container of equations into a four different containers with different invariants

on each. In the design for completion the same technique is used. The state components contain

either equations or rewrite rules, and the invariants in this case are assertions about which

equations and rulcs have been normalized with respect to some other rules, and which rules

have had their critical pairs computed.

As with matching. the data structures contain information that would be part of the control

structure of a sequential implementation. For example, in a sequential implementation of

completion, one might have nested loops for rewriting all equations with respect to all rules:

invariants about which equations are in normal form with respect to which rules depend on

the control point (i.e., the value of the program counter) within each loop. In our parallel

'-.1plementation. this control information is represented in the data structures. Similarly. to

guarantee that all critical pairs are eventually added, rules that have had their critical pairs

computed are stored in a state component having that property as an invariant. Our parallel

implementations resembles a sequential transition rule implementation by Lescanne [Les]. but

our data structure are concurrent and have more control information to allow for the additional

executions that come from parallelism.

Note that the liveness property does not require rules to be in normal form. However, prac-

tical experience from sequential implementations indicates that keeping rules inter-normalized

is crucial to performance. Therefore, the program is designed with inter-normalization as a per-
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formance requirement; information about the normalization relation between rules is encoded

into the state.

Performance has to be considered even at this stage in the design. Normalization of equa-

tions. normalization of rules. and critical pair calculations are all operations that can be repeated

multiple times on the same data without affecting program correctness. Thus, one straightfor-

ward approach to guaranteeing the liveness properties is to repeatedly normalize all equations

and rules with respect to all rules, and compute all critical pairs between all existing pairs of

rules. While this leads to technically correct executions, the cost in both time and space make

it impractical. Again, this is well known from numerous sequential implementations. These

performance considerations will result in the following design goals: an equation or rule should

never be normalized multiple times by the same set of rules; the critical pairs of a given pair of

rules should be computed at most once; only normalized rules should be used for critical pair

calculations. These were our design goals, but there are cases in which our implementation

may perform extra normalizations or work with rules that have not been normalized because

outdated versions of objects are being used. This trade-off is made to keep communication

overhead low.

5.4.2 Adjusting Minimum Granularity

The transition axioms in Figure 5-3 defined actions at the level of single rewrite steps and indi-

vidual critical pair additions. Parallelizing at this level of granularity would incur considerable

overhead, and is of no use on a small number of processors. Therefore, we adjust minimum

granularity by combining, rather than splitting rules. This is the opposite process to the one

performed for matching.

If too much rule combining is done, however, the resulting ,rain size be too large, and the

problem of insufficient parallelism will surface. A rough complexity bound is placed on the

computation required by each transition axiom, to achieve a performance balance between the

transition procedures. The complexity measure used for the axioms in the refined specification

is the following: assuming that operations on individual terms and rules require the a unit time

to compute, each transition axiom requires no more than linear time, meaning linear in the total

number of equations and rules in the system. Some transition axioms define actions that apply
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State Components
NE queue~equation] % new equations
AE : queue[equation] % all other equations
NO :queue[equation] % normalized equations
NT queue[equation] % non-trivial equations
UO queue[equation] % unorderable equations
NR :queue[rule] % new rules
SR queue[rule] % simplifying rules
LR queue[rule] % left reducers
RR: priority -queuelrule] % right reducers
CR : queue[rule] % critter
CD queue[rule] % critted
UC queuefrule) % uncritted
UR queue[rule] % unreduced rules
AR : queue[rule] % all rules
H {running.ordering-failure} % halt flag

Initially
NE = user input
NO = AE = NT = UO = NR = SR - LR = RR = CR = CD = UC - AR 0
H = running

Figure 5-4: Directly Implementable Specification-Part I

a single rule, at most once, to (at most) every rule or equation in the system. Other transition

axioms define actions that apply all rules as many times as possible to a single equation or rule.

An interesting aspect of this granularity adjustment is that it does not produce a refinement

of the original specification in the classical sense of refinement. The actions of the refined

specification are larger than the actions of the original specification, since each action of the

refined specification is equivalent to some sequence of actions of the original specification.

5.4.3 Simplifying the Transition Axioms

A third type of refinement used in matching was the simplification of transition axiom guards.

In particular, the guards in the directly implementable specification for matching had a simple

form: they tested containers for the existence of an element, and they tested the value of

scalar variables. Exactly the same style is used in the guards of the directly implementable

specification for completion.
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The guards in Figure 5-3 contain conditions on whether a term is in normal form. or whether

an equation is orderable. or whether an equation is in the set of critical pairs of the entire system:

all of these are costly to compute. The same technique that is used to weaken the liveness

property is also used to simplify these guards: equations and rules are put into different state

components. depending upon what invariants are true about them. The invariants on state

components in the refined specification match the conditions in the guards of Figure 5-3. so a

guard in the refined specification can simply depend on the existence of an item in a particular

state component.

Figures 5-4 through 5-7 give a directly implementable specification for completion. For the

reader's convenience, the state components specified in Figure 5-4 are also given in a graphical

representation in Figure 5-5. Each of the boxes in Figure 5-5 represents a state component in

the specification; the queues AE, AR, and UR share elements with other queues, but the rest

are mutually disjoint. The "usual" path that data (i.e.. rules and equations) take in Figure 5-5

is from top to bottom, with new equations being added to the topmost queue. NE.

The transition axioms make use of some subsidiary functions left-reducible, right-reduced.

rewrites, and right-reducible that are defined below. In addition to listing the state components.

Figure 5-4 gives their initial conditions. The state components have the following properties:

" NE is a queue(equation] that contains new equations about which nothing is known. They

may be equations that have been input by the user (as in the initial state) or they may

have been added as critical pairs of some rewrite rules. (None of the queue[equation]'s

or queue[rulej's in the specification need to be strict FIFO queues. A semi-queue, which

has no total order on elements but ensures that anything enqueued will eventually be

dequeued, would be sufficient. Our implementation uses FIFO queues.)

" AE is a queue[equation] that contains the union of NO, NT, and UO, which are the

queue[equationJ's of normalized equations. When a new rewrite rule is added, this set of

equations must be normalized with respect to that new rule.

* NO is a queue[equation] that contains normalized equations, where normalized means

normalized with respect to all rules except the new ones (i.e., AR - NR, where the minus

operation is subtraction on the set of elements).
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Figure 5-5: Venn diagram of state components for completion
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Transition Axioms
normalize-eqn

(e = head(NE)) =>
NE := NE - e &
NO:=NO+eIAR &AE:=AE+e IAR

filter-eqn
((s - t) = head(NO))

NO := NO - (s t) &

if (s 0 t) then NT := NT + (s t)

orient-eqn
((s - t) = head(NT)) =

NT NT - (s - t) &
if (s > t) then NR := NR + (s - t) & AR := AR + (s - t)

& AE := AE - (s - )
elseif (t > s) then NR := NR + (t - s) & AE := AE - (s )

& AR := AR + (t - s)
else UO := UO + (s t)

back-simplify
(r = head(NR)) =>

NR:= NR - r&
SR := SR + r&
NO := NO - rewrites(NO, r) &
NT := NT - rewrites(NT, r) &
UO := UO - rewrites(UO, r) &

AE AE - rewrites(AE, r) &
NE := NE + rewrites(AE, r)

left.reduce
(r = head(SR)) =

SR:= SR - r &
LR:= LR + r &
NR := NR - left reducible(NR, r) &

SR := SR - left -reducible(SR, r) &
LR := LR - left-reducible(LR, r) &

RR := RR - left reducible(RR, r) &
CR := CR - left-reducible(CR, r) &
UC - UC - left-reducible(UC, r) &

CD := CD - left-reducible(CD, r) &

UR := UR - left reducible(UR, r) &

AR := AR - left-reducible(AR, r) &
NE := NE + left-reduced(AR, r)

Figure 5-6: Directly Implementable Specification-Part II
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right-reduce
(r = smallest(LR))

LR :=LR - r &
RR:= RR + r &
NR:= NR - right-reducible(NR, r) + right-reduced(NR, r) k&

SR SR - right-reducible(SR, r) + right-reduced(SR, r) &
LR LR - right-reducible(LR, r) + right-reduced(LR, r) &
RR RR - right-reducible(RR, r) + right-reduced(RR, r) &
CR := CR - rightreducible(CR, r) + right-reduced(CR, r) &
CD CD - right-reducible(RR, r) + right-reduced(CD, r) &
UC := UC - right.reducible(UC, r) + right-reduced(UC, r) &
UR := UR + right-reduced(AR, r)

right-normalize
((s - t) = head(UR)) =

GR UR - (s - t) &
if (s - t) E NR then NR := NR - (s - t) + (S - t 1AR) &
if (s - t) E SR then SR := SR - (s -t) + (s- t AR)&
if (s - t) E LR then LR:= LR - (s -. t) + (S - t 1AR) &
if( - t) E RR then RR :=RR - (s - t) + (s -* t 1 AR)&

if (a -. t) E CR then CR:= CR - (s - t) + (s - t 1AR) &

if (s -t) E CD then CD := CD - (s - t) + (S - t 1 AR) &
if (s - t) E UC then UC := UC- (s - t) + (S- t iAR) &
if (s -- t) EAR then AR :=AR- (s - t) + (s - t AR)

add-critical
(((r, = head(CR)) & (r 2 = head(UC))) I (r3 = head(RR))) =>

if (r, = head(CR)) & (r2 = head(UC)) then

(UC := UC - r2) &
(CD CD + r2) &

(NE NEU crit(rir 2 ))

else % Note: r 3 = head(RR)
(UC := UCu CRu CD) &
(CD := 0) &

(CR := {r3}) &
(RR:= RR- r3 ) &

(NE := NE U crit(r3, r 3))

fail
(P0 # 0) =* (H := orderinglailure)

Liveness

Weak fairness between fail and the set of all other axioms.

Figure 5-7: Directly Implementable Specification-Part III
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e NT is a queue[equation] that contains non-trivial, normalized equations. As with NO.

the elements are normalized with respect to AR - NR. (Recall that non-trivial means

that the right and left-hand sides are not identical.)

9 UO is a queue[equation] that contains unorderable, non-trivial, normalized equations.

Unorderable means that neither side of the equation is less than the other in the reduction

ordering >. Again, normalized is with respect to AR - NR.

9 AR is a queue[rule] that contains all the rules in the system. It has the same elements as

NR U SR u LR u RR U CR U UC U CD, where U is the union of queues considered as sets.

* UR is a queue[rulel that contains a subset of the elements in AR that are not right

normalized. I.e., the right-hand side of all rules in AR - UR are in normal form with

respect to right reducers as defined below.

* NR is a queue[rule] that contains new rules about which little is known, except that the

left-hand side is greater than the right-hand side by >. Since the ordering invariant is

true of all rules in the system, we will not explicitly mention it for each of the state

components.

* SR is a queue[rule] that contains simplifying rules, i.e., rules that are new, but have been

used to normalize the equations in AE.

e LR is a queue[rule] that contains simplifying rules (as in SR) that left reducers, i.e., all

other rules in AR have been left normalized with respect to LR.

* RR is a priority-queue[rule] that contains rules that are simplifiers, left reducers, and

right reducers. A rule r is a right reducer if all rules in AR - UR have been right

normalized with respect to r. (Again, a semi-queue would technically be sufficient for

the representation of RR. A priority-queue[rule] is a special of a semi-queue, assuming

ordering on elements is well-founded. We use the relative size of rules as the ordering. A

priority.queue[rule] is used in the implementation because rules dequeued from RR will

be used to compute critical pairs, and sequential implementations had demonstrated the

practical importance of computing critical pairs between small rules before larger ones.)
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* CR is a single element queue[rule] i.e., it is either empty or contains one rule. A rule in

CR is called the critter. (We give CR the type queue[rule], even though this is overly

general, to avoid introduction of another data type in this presentation.) A rule r in CR

has all the properties of a rule in RR, and in addition. the critical pairs for r and all

rules in CD (below) have been computed. This invariant is complicated to state precisely.

since a critical pair that has been computed and added to NE may already have been

normalized, deleted, or oriented into a rewrite rule.

* UC is a queue[rule] called the uncritted rules. All invariants for CR (and therefore CD)

hold on rules in UC, and in addition the critical pairs of rules in UC and CD (below)

have been computed. I.e., given a rule r, in UC and another rule r2 in either UC or CD.

crit(rl,r 2 ) have been computed and added to AE. UC is called the queue of uncritted

rules because the critical pairs between the critter and the rules in UC have not yet been

computed.

e CD is a queue[rule] that contains the critted rules. I.e., it has all the properties of UC

plus the additional properties that all critical pairs of rules in CD and the critter (CR)

have been computed.

* H is used to record an ordering failure.

In the initial state, the set of new equations (NE) contains the user's input, and everything

else is empty.

The transition axioms define actions that move rules from one queue to another. maintaining

all the above invariants. They make use of the following predicates, where queues are viewed

as sets.

* If Q is either a set of equations or a set of rules, then rewrites(Q, r) is the subset of Q

that can be rewritten using r.

* If Q is a set of rules, then left -reducible(Q,r) is the subset of Q that can be rewritten on

the left-hand side by r.

e If Q is a set of rules, then right .reducible(Q,r) is the subset of Q that can be rewritten

on the right-hand side by r.
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e If Q is a set of rules, then right -reduced(Q, r) is the set right-reducible(Q, r) with each

right-hand side rewritten once by r.

We informally describe the axioms in Figures 5-6 and 5-7 by describing the actions that

each axiom defines. Normalizeeqn actions remove an equation from the NE, normalize it with

respect to AR, and add it to NO. Filtereqn actions remove a normalized equation from NO,

check to see whether it is a trivial equation, and if not, insert it into NT. Orient-eqn actions

remove an equation from NO and orient it, if possible, using the given reduction ordering. If

neither orientation is consistent with the reduction ordering, then the equation is added to UO:

otherwise the resulting rule is added to NR. When a new rule is added by an orient-eqn action,

the equations that are in normal form must be rewritten by the new rule to ensure they are still

in in normal form. This is done by a back-simplify action; any equation than can be rewritten

by the new rule may no longer be in normal form with respect to other rules, so it is moved to

.VE. Left-reduce and right-reduce are similar to back-simplify, but in these cases other rules are

rewritten by the new one. If a rule is left-reduced, it is moved back to NE, since it may have

to be deleted or oriented in the other direction. If a rule is right-reduced tl'en it is moved into

UR, which marks it as not having a normalized right-hand side. The right-normalize actions

take rule from UR and normalize them. Critical pair computations are done by add.critical.

and the new equations are added to NE. Fail actions are used to stop the computation when

an unorderable equation (which is also normalized and non-trivial) has been found.

The liveness property in Figure 5-7 is weak fairness between the fail actions and all others.

In other words, if a fail action is continuously enabled, it must eventually be taken. Thus, an

unorderable equation may exist in UO for a long time before the completion process fails, but

unless the equations is moved or deleted, the process must eventually halt with failure. Note

that there is no fairness requirement between any of the other axioms.

The transition axiom specification given in Figures 5-4 through 5-7 have been used as the

design of a parallel completion procedure, which is discussed in the next section. The invariants

stated above for each of the queues in the completion procedure state would be an important

piece of a correctness proof to show that the refined specification satisfies the specification in

Figure 5-3. Although the program has been tested on a number of interesting examples. we

believe that rigorous correctness arguments, along the lines of those given for the matching
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program in Chapter 4, would be an interesting exercise for completion program. However, such

proofs are beyond the scope of this thesis.

5.5 Scheduling and Performance

In this section we describe some of the schedulers for completion and present performance

numbers. To simplify this discussion, we consider only inputs on which completion produces

a convergent set of rewrite rules without failing. Our implementation does not have a user

interface that allows the program to be used as a semi-decision procedure, so we can only give

performance numbers for executions that halt. In addition, since our implementation cannot

be used as a semi-decision procedure, it only fails if there is no other transition procedure that

can take a step, and since we do not include such examples, the scheduling of the fail procedure

is not discussed here.

We begin by presenting the performance for our best scheduler, and then discuss some of

the alternatives that we considered. There is an important difference between the numbers

presented here and the numbers presented in Chapter 4: the inputs given for completion are

realistic examples. Most of the examples are algebraic, and some are taken from the term

rewriting literature.

These examples are executed on Firefly with 6 CVAX processors, varying the number of

threads between 1 and 6. Although we intended to compare our parallel solution to a sequen-

tial solution that was implemented first, the parallel program (running on one processor) is

significantly faster than the sequential program. In matching, where both the parallel and

sequential programs were relatively simple, it was not difficult to ensure that the parallel and

sequential programs were consistent. When appropriate, optimizations applied to the parallel

matching program were also applied to the sequential matching program. This was much more

difficult for completion, and we eventually abandoned the sequential program as a baseline.

One indication that our implementation is reasonably fast in an absolute sense is a comparison

to the implementation of completion in the Larch Prover [GGH90]. The Larch Prover imple-

mentation has been used for a number of large examples, and is consistently slower than our

implementation running on one processor. Admittedly, the Larch Prover implementation is

more powerful than ours, especially in its semi-automatic approach to proving termination, but
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l abs 1 : 2 1 : 3 1 : 4 1 :5 1 : 6
grp 1718 2.0 2.4 2.1 4.1 2.9
mult 4666 1.9 2.7 3.4 3.3 2.9

fib4 6603 1.8 3.1 2.9 2.2 3.5
grp2hom 11980 2.0 2.8 2.5 4.2 4.2
grp56 18796 2.2 2.3 3.1 3.7 3.8
domino 44162 2.0 2.9 3.7 3.8 5.1
dom 55871 1.9 2.9 3.7 4.2 4.8
domino2 55585 1.9 2.9 3.7 4.3 4.8

Figure 5-8: Transition-based completion using the best scheduler.

the comparison demonstrates that our implementation is fast enough to be of practical use.

Figure 5-8, gives performance results for 8 example inputs. The first column of numbers is

the absolute performance of the program running on one processor, i.e., using a scheduler with

only one thread. Each of the other columns gives the relative performance as the number of

processors is increased. The numbers were obtained by averaging five executions of each exam-

ple. Note that the first three examples are relatively short executions; typically the speedups

are better with the larger examples.

The scheduler for completion is very similar to those for matching. The scheduler used to

produce the numbers in Figure 5-8 executes the transition procedures in the order given by the

specification in Figures 5-6 and 5-7. This scheduler repeatedly invokes the same transition pro-

cedure until it stutters. at which point it invokes the next procedure named in the specification.

The only exception is the add-critical procedure, which execution only once before repeated

the other procedures. In choosing this scheduler, we are using one of the lessons learned from

sequential implementations of completion: performance, both in time and space, is better if

equations and rules are kept in normal form. Thus, as soon as there is new inter-normalization

work to be done, the critical pair computations are stopped.

A similar scheduling strategy to the one used for Figure 5-8 is to execute . single instance

of add-critical, and then begin normalization again, even if no new equations were added. This

seems to be a worse strategy, at least in the 1 processor case, because when no new equations

have been added there should be nothing normalize. However, the performance of this scheduler

was not noticeably different than when the scheduler waited for a new equaition to be added

152



Slabs 1:2 1:3 1:4 1:5 1:6
grp 3994 1.8 2.6 3.3 3.9 3.6
mult 4480 1.7 2.4 3.4 3.5 3.6
fib4 6699 1.9 2.7 2.0 2.5 3.2
grp2hom 11687 1.9 2.8 3.4 3.9 4.4
grp56 77037 7.8 7.0 9.8 11.5 15.1
domino 44609 2.0 2.0 3.7 4.4 4.9
dom 56740 1.9 2.8 3.1 4.2 3.0
domino2 57603 1.9 2.8 3.4 4.3 4.7

Figure 5-9: Transition-based completion using a round-robin scheduler.

before starting normalization.

Another scheduler that seems like a bad idea is a round-robin scheduler. In this case each

transition procedure is executed exactly once before going on the next one. Since more than one

critical pair may be added by a single add-critical invocation, rules and equations are sometimes

not inter-reduced. The performance using this scheduler is shown in Figure 5-9. An interesting

aspect of these numbers is that the grp56 example gets super-linear speedup. The performance

of this example is highly dependent on the order in which critical pairs are computed, because

there is one critical pair that eliminates most of the other rules [Mar86]. That explains why

the speedup is super-linear. The other interesting point about the grp56 example is that while

the speedup is much better for the round-robin scheduler than for the scheduler in Figure 5-8.

the absolute performance is not. The main difference is that the round-robin scheduler is much

slower on one processor, giving the illusion of great performance on 6 processors. The same is

true of the grp, where the speedup improves from 3.2 to 3.6, but absolute performance is worse.

The conclusion is that looking at speedups without considering absolute performance is a very

bad way to tune parallel program performance.

The choice of scheduler can have a dramatic affect on performance. Another scheduler

that we considered invokes each of the transition procedures, including add-critical, until the

procedure stutters. In this case the state may become quite large while critical pairs are being

computed. For most inputs, this scheduler ran out of space before finding an answer.

The main optimization used in the matching scheduler was to increase the granularity of

transition procedures. This does not appear to be a problem for completion, and for small inputs
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the performance appears to to limited more by lack of parallelism than by scheduling overhead.

Increasing the granularity of the completion tasks would be much harder than with matching.

because most of the parallelism is process parallelism rather than data parallelism. One might.

for example. wish to combine the filter procedure with the normalizeeqn procedure, but this

requires restructuring the state and significantly changes those two transition procedures.

The final two sets of performance numbers are not directly related to performance tuning of

the application scheduler. Instead, they consider some of the effects of the underlying system

scheduler. In the previous sets of the numbers, the threads of the application scheduler were

pinned to particular processors, i.e., they are not moved from one processor to another by the

operating system. As shown in Figure 5-10, which used the same application scheduler as

Figure 5-8. the performance is significantly worse when threads are not pinned, because of the

overhead of scheduling, particularly the loss of cache context.

labs 1:2 1:3 1:4 1:5 1:6
grp 1703 1.9 1.9 2.1 2.3 2.2
mult 4693 1.8 2.5 2.8 3.0 2.9
fib4 7094 1.9 3.1 2.9 2.7 2.3
grp2hom 11753 1.5 2.1 2.8 3.2 2.6
grp56 17460 1.6 2.1 2.5 2.0 2.5
domino 45139 1.8 1.8 2.2 2.5 3.3
dom 56266 1.1 2.3 3.2 2.8 3.3
domino2 56507 1.8 2.0 3.3 3.0 2.8

Figure 5-10: Performance when threads are not pinned to processors.

The performance results for completion are encouraging. For the larger examples. perfor-

mance continues to improve as each processor is added. This does not imply scalability beyond

a small number of processors, but at least we found no evidence against scaling the completion

process. In our implementation, some of the data structures have single synchronization points,

so on a larger multiprocessor they would probably have to be changed to reduce contention

or improve locality. Fortunately, the queues need not be strict FIFO queues, so an efficient

distributed implementation of the queues should be possible.

Our procedure is significant from an algorithmic standpoint as well: the completion pro-

cess is complicated and the parallel procedure differs in non-trivial ways from sequential ones.
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We used the abstract description of completion given by Bachmair et al [BDH86 as a start-

ing point for our design. but there is a large step between their description and the directly

implementable transition-axiom specification that describes our procedure. In particular, the

liveness requirement. CP fairness, was encoded into the data structures without creating too

many serialization points.
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Chapter 6

Summary and Conclusions

In this thesis we introduced a new approach to the design and implementation of parallel pro-

grams that is intended for applications characterized by irregular data and control structures.

Programs with such irregularities have proved especially difficult for simpler programming mod-

els that rely on compiler detected parallelism, or use only strict data parallelism. Our work is

therefore based on a programming model with explicit parallelism and mutable data.

The transition-based approach, presented in Chapter 4, addresses the problem of program

synthesis by breaking the development process into four distinct phases; each phase has clearly

stated correctness and performance requirements. The approach encourages the discovery of

program level parallelism that includes both data and process parallelism. The emphasis is on

high level concerns such as: finding the right task unit for parallelism, determining the kinds of

shared objects that will be used in the state, and choosing a scheduling strategy for the tasks.

A program is implemented as a set of transition procedures that are implemented to have

the behavior of indivisible operations. but the performance of highly concurrent operations.

Chapters 2 and 3 dealt with how requirements can be met, focusing on the lower level concerns

of how to build parallel program modules, and how to specify their interfaces. Chapter 2 gave

a precise meaning to "indivisible," which is used not only for the transition procedures, but for

subsidiary data abstractions on which those procedures are built. Chapter 3 gave examples of

implementations of data abstractions that exhibit a high degree of concurrency.

Chapter 2 examined foundational issues relevant to what program modules should look

like and how correct behavior should be defined. We examined existing correctness notions.
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extended notions from multiprocessor memory models to general concurrent data types, and

introduced a new notion that extends linearizability to allow for interference specifications.

The key insight behind this extension is that in practice, many concurrent data types are not

used with concurrency between all pairs of operations. Furthermore, this lack of concurrent

invocation is useful information to the data type's implementor, since in many cases a simpler

or more efficient implementation can be used. By adding explicit interference information

to a data type's specification, this information becomes part of the contract between user

and implementor. We also defined a liveness property called non-stopping that is appropriate

for concurrent data types; non-stopping precludes, for example, implementations that either

deadlock or loop.

The emphasis in Chapter 2 was on how to build clean abstractions, with secondaly atten-

tion given to performance. The emphasis in Chapter 3 was on how to get good performance,

assuming the requirements for abstraction from Chapter 2. Performance of a parallel program

is an issue of latency-how long does the user have to wait? Performance of concurrent data

types involves a combination of latency and throughput; one is sometimes willing to allow

longer latency for individual operations, if it means that an object can handle multiple concur-

rent operations faster than the sum of their latencies. The programming technique employed

in Chapter 3 involved fine-grained synchronization, where critical regions typically involved a

small fixed number of instructions. Because the overhead of invoking a synchronization primi-

tive was relatively high, we also used coherent shared memory without explicit synchronization.

Two specific example implementations were presented: a queue implementation that grows dy-

namically, and a mapping implementation that yields high throughput on key assignments. We

concluded from these examples that while highly concurrent mutable objects involve intricate

coding, abstraction can often be used to localize the concurrency concerns.

We demonstrated our approach on two example programs, matching and completion. Both

programs were designed using the transition-based approach, and the implementations done

using highly concurrent data types that are linearizable modulo their interference specifications.

The performance results in both cases provided evidence that the transition-based approach

can be used to develop efficient programs.

As expected, the overhead of parallelism outweighed any benefit of parallelism on realistic
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matching examples; however, the simplicity of the problem made it possible to analyze the

effects of the transition-based approach on performance. We showed that for certain classes

of input data, the application scheduler could be tuned to produce nearly linear speedups.

although a scheduler tuned for one class often performed badly on another. This performance

instability led us to choose a scheduler that was less than optimal on some of the easy cases.

but handled the aberrant cases more gracefully. The conclusion was that to adequately address

performance instability, one must pay the cost of allowing late binding on scheduling decisions.

The completion problem validated the transition-based approach as something useful, as

opposed to just interesting. Our program performs well on realistic inputs, and improved with

each addition of a processor. The completion procedure is a contribution, in itself, to the

field of term rewriting research. That our procedure has an optimized implementation on a real

multiprocessor proves the practical nature of our procedure. As with matching, parallelism does

not pay off until there is sufficient computation to outweight the overhead of parallelism. With

completion, however, there are many interesting examples for which the parallel implementation

is faster than the sequential one. For the group axioms, a classic problem for completion

procedures, parallelism proves to be beneficial, and on some larger examples the performance

gain from six-fold parallelism is between four and five.

All of our experimental work was done on a six processor, shared-bus machine, although the

approach was designed with a view toward larger machines and alternate models of memory.

One indication of scalability in our designs is that even on the shared memory we used multi-

ported objects, which contain thread-specific data within the object implementation. This

provides an abstract model for concurrent objects that will allow us to move from centrally

stored objects to distributed ones, without changing the object interfaces. We plan to pursue

these ideas on distributed memory multiprocessors by develop a library of multi-ported objects

for a variety of machines. The data types implemented as part of matching and completion will

provide a starting point for this library, and porting these objects to new architectures would

be a reasonable next step. A library of objects with consistent interfaces across machines.

but highly tuned implementations on each, could provide the basis for portable and efficient

application development.

One fundamental assumption in our implementations, although not in the high level designs.
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is that the machine provides sequentially consistent memory. Modifying the code to remove this

dependence would require the addition of explicit synchronization. Adding such synchronization

conservatively would not be difficult, but the impact on performance could be quiet significant.

In that regard the dependence on sequentially consistent memory may be useful: since the

code is designed to perform well on sequentially consistent memory, it provides a benchmark

for comparing the performance of weaker memory models. In addition, if the semantics of

memory remains unchanged, the programs could be ported to machines with more processors

or non-uniform memory access; in this case the issue becomes one of performance rather than

correctness. We envision having to replace some of the shared objects with distributed versions

to remove bottlenecks that might arise in motr loosely coupled architectures, but again, the

current object interface allows for this change without affecting the higher level program.

There is no theoretical limit on the number of processors that can be used with the

transition-based approach, but as discussed in Chapter 5, there is a pragmatic limit because a

program produced by this method has only one parallel algorithm, the scheduler. To under-

stand this limit, recall that data parallelism is obtained by allowing multiple instances of the

same transition procedures to execute concurrently, while process parallelism involves different

transition procedures executing concurrently. As with any method, process parallelism requires

that different code be written for every distinct process; the limitation in our approach is that

this code, which is the set of transition procedu.res, is implemented as a single abstraction.

There is a limit to how many procedures one can reasonably expect to have in a single ab-

straction. To remove this limit, one needs the ability to nest parallel algorithms within others.

which implies a multi-level scheduler. The hard part of such an extension is to engineer the

interface between the application scheduler and the transition procedures. For our one-level

scheduler, this interface is comprised of the scheduler requirements in Chapter 4, and the low

level design decisions of Chapter 3. For a multi-level scheduler, the performance implications

of these decisions would have to be rethought.

There are still many gaps in our understanding of how to build well-structured yet efficient

parallel programs. However, many of the lessons learned here will apply to other architectures

and different application domains, and we believe that the approach is a first step down a

promising path.
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